हिंदी

2 ∫ 1 X √ 3 X − 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_1^2 x\sqrt{3x - 2} dx\]

योग

उत्तर

\[\int_1^2 x\sqrt{3x - 2} d x\]

\[Let, 3x - 2 = t,\text{ then }3dx = dt\]

\[\text{when, }x = 1 ; t = 1\text{ and }x = 2 ; t = 4\]

\[\text{Therefore the integral becomes}\]

\[ \int_1^4 \frac{t + 2}{3}\sqrt{t} \frac{dt}{3}\]

\[ = \frac{1}{9} \int_1^4 t^\frac{3}{2} + 2\sqrt{t} dt\]

\[ = \frac{1}{9} \left[ \frac{2 t^\frac{5}{2}}{5} + \frac{4 t^\frac{3}{2}}{3} \right]_1^4 \]

\[ = \frac{1}{9}\left[ \frac{64}{5} + \frac{32}{3} - \frac{2}{5} - \frac{4}{3} \right]\]

\[ = \frac{46}{135}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Revision Exercise [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Revision Exercise | Q 2 | पृष्ठ १२१

संबंधित प्रश्न

\[\int\limits_0^\infty \frac{1}{a^2 + b^2 x^2} dx\]

\[\int\limits_0^1 \frac{x}{x + 1} dx\]

\[\int\limits_0^\pi \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^{\pi/2} x^2 \cos\ 2x\ dx\]

\[\int\limits_1^e \frac{e^x}{x} \left( 1 + x \log x \right) dx\]

\[\int\limits_1^4 \frac{x^2 + x}{\sqrt{2x + 1}} dx\]

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^{\pi/2} \frac{dx}{a \cos x + b \sin x}a, b > 0\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int\limits_0^1 \frac{24 x^3}{\left( 1 + x^2 \right)^4} dx\]

\[\int\limits_4^9 \frac{\sqrt{x}}{\left( 30 - x^{3/2} \right)^2} dx\]

\[\int\limits_0^a \sin^{- 1} \sqrt{\frac{x}{a + x}} dx\]

\[\int_{- \frac{\pi}{2}}^\pi \sin^{- 1} \left( \sin x \right)dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{2 - \sin x}{2 + \sin x} \right) dx\]

If f(x) is a continuous function defined on [−aa], then prove that 

\[\int\limits_{- a}^a f\left( x \right) dx = \int\limits_0^a \left\{ f\left( x \right) + f\left( - x \right) \right\} dx\]

\[\int\limits_0^2 e^x dx\]

\[\int\limits_0^{\pi/2} \sin x\ dx\]

\[\int\limits_2^3 x^2 dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \log\left( \frac{a - \sin \theta}{a + \sin \theta} \right) d\theta\]

\[\int\limits_0^1 2^{x - \left[ x \right]} dx\]

If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to


\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]


\[\int\limits_0^{\pi/4} \tan^4 x dx\]


\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Evaluate the following:

`int_(-1)^1 "f"(x)  "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x  < 0):}`


Evaluate the following using properties of definite integral:

`int_0^1 log (1/x - 1)  "d"x`


Evaluate the following:

`Γ (9/2)`


Evaluate the following integrals as the limit of the sum:

`int_0^1 (x + 4)  "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Choose the correct alternative:

`Γ(3/2)`


Verify the following:

`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`


`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×