Advertisements
Advertisements
प्रश्न
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
उत्तर
\[\int_1^2 x\sqrt{3x - 2} d x\]
\[Let, 3x - 2 = t,\text{ then }3dx = dt\]
\[\text{when, }x = 1 ; t = 1\text{ and }x = 2 ; t = 4\]
\[\text{Therefore the integral becomes}\]
\[ \int_1^4 \frac{t + 2}{3}\sqrt{t} \frac{dt}{3}\]
\[ = \frac{1}{9} \int_1^4 t^\frac{3}{2} + 2\sqrt{t} dt\]
\[ = \frac{1}{9} \left[ \frac{2 t^\frac{5}{2}}{5} + \frac{4 t^\frac{3}{2}}{3} \right]_1^4 \]
\[ = \frac{1}{9}\left[ \frac{64}{5} + \frac{32}{3} - \frac{2}{5} - \frac{4}{3} \right]\]
\[ = \frac{46}{135}\]
APPEARS IN
संबंधित प्रश्न
If f(x) is a continuous function defined on [−a, a], then prove that
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
\[\int\limits_0^{1/\sqrt{3}} \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_0^\pi \frac{dx}{6 - \cos x}dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
`int_(-1)^1 "f"(x) "d"x` where f(x) = `{{:(x",", x ≥ 0),(-x",", x < 0):}`
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Evaluate the following:
`Γ (9/2)`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
`Γ(3/2)`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.