हिंदी

Π ∫ 0 X Sin X 1 + Cos 2 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]

योग

उत्तर

\[Let, I = \int_0^\pi \frac{x \sin x}{1 + \cos^2 x} d x ...........(1)\]

\[ = \int_0^\pi \frac{\left( \pi - x \right) \sin\left( \pi - x \right)}{1 + \cos^2 \left( \pi - x \right)} d x\]

\[ = \int_0^\pi \frac{\left( \pi - x \right) \sin x}{1 + \cos^2 x} d x ................(2)\]

Adding (1) and (2)

\[2I = \int_0^\pi \left[ \frac{x \sin x}{1 + \cos^2 x} + \frac{\left( \pi - x \right) \sin x}{1 + \cos^2 x} \right] d x\]

\[ = \int_0^\pi \frac{\pi \sin x}{1 + \cos^2 x} d x \]

\[ = \pi \left[ - \tan^{- 1} \left( cosx \right) \right]_0^\pi \]

\[ = - \pi\left[ \tan^{- 1} \left( - 1 \right) - \tan^{- 1} \left( 1 \right) \right]\]

\[ = - \pi\left( - \frac{\pi}{4} - \frac{\pi}{4} \right)\]

\[ = \frac{\pi^2}{2}\]

\[Hence, I = \frac{\pi^2}{4}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Revision Exercise [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Revision Exercise | Q 41 | पृष्ठ १२२

संबंधित प्रश्न

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_0^{\pi/2} \sqrt{1 + \cos x}\ dx\]

\[\int\limits_0^1 \left( x e^{2x} + \sin\frac{\ pix}{2} \right) dx\]

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_0^{\pi/4} \left( \sqrt{\tan}x + \sqrt{\cot}x \right) dx\]

\[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\]

\[\int\limits_{\pi/6}^{\pi/3} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^\pi x \sin^3 x\ dx\]

\[\int\limits_0^\pi \log\left( 1 - \cos x \right) dx\]

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


\[\int\limits_2^3 \left( 2 x^2 + 1 \right) dx\]

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]

\[\int\limits_a^b x\ dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \cos^2 x\ dx .\]

\[\int\limits_0^{\pi/4} \tan^2 x\ dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

 


The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 


\[\int\limits_{- 1}^1 \left| 1 - x \right| dx\]  is equal to

\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

\[\int\limits_0^{\pi/2} \frac{\sin x}{\sin x + \cos x} dx\]  equals to

Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .


Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .


`int_0^(2a)f(x)dx`


\[\int\limits_0^{\pi/4} \tan^4 x dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


Using second fundamental theorem, evaluate the following:

`int_0^1 "e"^(2x)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_0^(1/4) sqrt(1 - 4)  "d"x`


Using second fundamental theorem, evaluate the following:

`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`


Using second fundamental theorem, evaluate the following:

`int_1^2 (x - 1)/x^2  "d"x`


Choose the correct alternative:

`int_0^1 (2x + 1)  "d"x` is


Choose the correct alternative:

`int_0^oo "e"^(-2x)  "d"x` is


Choose the correct alternative:

If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x)  "d"x + int_"c"^"b" f(x)  "d"x` is


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×