Advertisements
Advertisements
प्रश्न
\[\int\limits_0^\pi \frac{x \sin x}{1 + \cos^2 x} dx\]
उत्तर
\[Let, I = \int_0^\pi \frac{x \sin x}{1 + \cos^2 x} d x ...........(1)\]
\[ = \int_0^\pi \frac{\left( \pi - x \right) \sin\left( \pi - x \right)}{1 + \cos^2 \left( \pi - x \right)} d x\]
\[ = \int_0^\pi \frac{\left( \pi - x \right) \sin x}{1 + \cos^2 x} d x ................(2)\]
Adding (1) and (2)
\[2I = \int_0^\pi \left[ \frac{x \sin x}{1 + \cos^2 x} + \frac{\left( \pi - x \right) \sin x}{1 + \cos^2 x} \right] d x\]
\[ = \int_0^\pi \frac{\pi \sin x}{1 + \cos^2 x} d x \]
\[ = \pi \left[ - \tan^{- 1} \left( cosx \right) \right]_0^\pi \]
\[ = - \pi\left[ \tan^{- 1} \left( - 1 \right) - \tan^{- 1} \left( 1 \right) \right]\]
\[ = - \pi\left( - \frac{\pi}{4} - \frac{\pi}{4} \right)\]
\[ = \frac{\pi^2}{2}\]
\[Hence, I = \frac{\pi^2}{4}\]
APPEARS IN
संबंधित प्रश्न
Evaluate the following integral:
Evaluate each of the following integral:
The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
Evaluate : \[\int e^{2x} \cdot \sin \left( 3x + 1 \right) dx\] .
`int_0^(2a)f(x)dx`
\[\int\limits_0^{\pi/4} \tan^4 x dx\]
\[\int\limits_0^\pi x \sin x \cos^4 x dx\]
\[\int\limits_{- \pi}^\pi x^{10} \sin^7 x dx\]
\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]
Using second fundamental theorem, evaluate the following:
`int_0^1 "e"^(2x) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^(1/4) sqrt(1 - 4) "d"x`
Using second fundamental theorem, evaluate the following:
`int_0^3 ("e"^x "d"x)/(1 + "e"^x)`
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Choose the correct alternative:
`int_0^1 (2x + 1) "d"x` is
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.