हिंदी

1 ∫ 0 ( 3 X 2 + 5 X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^1 \left( 3 x^2 + 5x \right) dx\]
योग

उत्तर

\[\int_a^b f\left( x \right) d x = \lim_{h \to 0} h\left[ f\left( a \right) + f\left( a + h \right) + f\left( a + 2h \right) . . . . . . . . . . . . . . . + f\left( a + \left( n - 1 \right)h \right) \right]\]
\[\text{where }h = \frac{b - a}{n}\]

\[\text{Here }a = 0, b = 1, f\left( x \right) = 3 x^2 + 5x, h = \frac{1 - 0}{n} = \frac{1}{n}\]
Therefore,
\[I = \int_0^1 \left( 3 x^2 + 5x \right) d x\]
\[ = \lim_{h \to 0} h\left[ f\left( 0 \right) + f\left( 0 + h \right) + . . . . . . . . . . . . . . . . . . . . + f\left\{ 0 + \left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ \left( 0 + 0 \right) + \left( 3 h^2 + 5h \right) + . . . . . . . . . . . . . . . + \left\{ 3 \left( n - 1 \right)^2 h^2 + 5\left( n - 1 \right)h \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ 5h\left( 1 + 2 + . . . . . . . . . + n \right) + 3 h^2 \left\{ 1^2 + 2^2 + 3^2 . . . . . . . . . + \left( n - 1 \right)^2 \right\} \right]\]
\[ = \lim_{h \to 0} h\left[ 5h\frac{n\left( n - 1 \right)}{2} + h^2 \frac{3n\left( n - 1 \right)\left( 2n - 1 \right)}{6} \right]\]
\[ = \lim_{n \to \infty} \frac{1}{n}\left[ \frac{5\left( n - 1 \right)}{2} + \frac{\left( n - 1 \right)\left( 2n - 1 \right)}{2n} \right]\]
\[ = \lim_{n \to \infty} \left[ \frac{5}{2}\left( 1 - \frac{1}{n} \right) + \frac{1}{2}\left( 1 - \frac{1}{n} \right)\left( 2 - \frac{1}{n} \right) \right]\]
\[ = \frac{5}{2} + 1\]
\[ = \frac{7}{2}\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Exercise 20.6 [पृष्ठ १११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Exercise 20.6 | Q 14 | पृष्ठ १११

संबंधित प्रश्न

\[\int\limits_{- 1}^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^{\pi/2} \left( \sin x + \cos x \right) dx\]

\[\int\limits_0^{\pi/4} \sec x dx\]

\[\int\limits_0^{\pi/2} \cos^3 x\ dx\]

\[\int\limits_1^2 \frac{3x}{9 x^2 - 1} dx\]

\[\int\limits_0^1 x e^{x^2} dx\]

\[\int\limits_0^1 \frac{2x}{1 + x^4} dx\]

\[\int\limits_0^\pi \frac{1}{3 + 2 \sin x + \cos x} dx\]

\[\int\limits_4^{12} x \left( x - 4 \right)^{1/3} dx\]

\[\int_{- 1}^2 \left( \left| x + 1 \right| + \left| x \right| + \left| x - 1 \right| \right)dx\]

 


\[\int\limits_0^{\pi/2} \frac{\sqrt{\cot x}}{\sqrt{\cot x} + \sqrt{\tan x}} dx\]

\[\int\limits_0^{\pi/2} \frac{1}{1 + \sqrt{\tan x}} dx\]

\[\int\limits_0^\infty \frac{\log x}{1 + x^2} dx\]

\[\int\limits_0^\pi x \cos^2 x\ dx\]

Evaluate the following integral:

\[\int_{- a}^a \log\left( \frac{a - \sin\theta}{a + \sin\theta} \right)d\theta\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_0^5 \left( x + 1 \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} x \cos^2 x\ dx .\]

 


\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

Evaluate each of the following integral:

\[\int_0^\frac{\pi}{4} \tan\ xdx\]

 


Evaluate each of the following integral:

\[\int_0^\frac{\pi}{2} e^x \left( \sin x - \cos x \right)dx\]

 


\[\int\limits_0^\sqrt{2} \left[ x^2 \right] dx .\]

If \[\left[ \cdot \right] and \left\{ \cdot \right\}\] denote respectively the greatest integer and fractional part functions respectively, evaluate the following integrals:

\[\int\limits_0^{\pi/4} \sin \left\{ x \right\} dx\]

 


\[\int_0^\frac{\pi^2}{4} \frac{\sin\sqrt{x}}{\sqrt{x}} dx\] equals


\[\int\limits_1^\sqrt{3} \frac{1}{1 + x^2} dx\]  is equal to ______.

The value of the integral \[\int\limits_0^\infty \frac{x}{\left( 1 + x \right)\left( 1 + x^2 \right)} dx\]

 


\[\lim_{n \to \infty} \left\{ \frac{1}{2n + 1} + \frac{1}{2n + 2} + . . . + \frac{1}{2n + n} \right\}\] is equal to

\[\int\limits_0^1 \frac{d}{dx}\left\{ \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \right\} dx\] is equal to

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]


\[\int\limits_0^{\pi/4} \cos^4 x \sin^3 x dx\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]


\[\int\limits_0^{2\pi} \cos^7 x dx\]


\[\int\limits_0^\pi x \sin x \cos^4 x dx\]


\[\int\limits_0^\pi \frac{x}{a^2 \cos^2 x + b^2 \sin^2 x} dx\]


\[\int\limits_0^{15} \left[ x^2 \right] dx\]


\[\int\limits_{\pi/6}^{\pi/2} \frac{\ cosec x \cot x}{1 + {cosec}^2 x} dx\]


Evaluate the following integrals as the limit of the sum:

`int_1^3 x  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


Evaluate the following integrals as the limit of the sum:

`int_0^1 x^2  "d"x`


`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×