हिंदी

Π / 3 ∫ 0 Cos X 3 + 4 Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]

योग

उत्तर

\[\int_0^\frac{\pi}{3} \frac{\cos x}{3 + 4\sin x} d x\]

\[Let, \sin x = t \Rightarrow \cos x dx = dt\]

\[\text{When, }\sin x \to 0 ; t \to 0\]

\[\text{And }\sin x \to \frac{\pi}{3} ; t \to \frac{\sqrt{3}}{2}\]

\[ = \int_0^\frac{\sqrt{3}}{2} \frac{dt}{3 + 4t}\]

\[ = \frac{1}{4}\log \left[ 3 + 4t \right]_0^\frac{\sqrt{3}}{2} \]

\[ = \frac{1}{4}\log\left[ \log\left( 3 + 2\sqrt{3} \right) - \log\left( 3 + 0 \right) \right]\]

\[ = \frac{1}{4}\log\left[ \log\left( 2\sqrt{3} + 3 \right) - \log\left( 3 \right) \right]\]

\[ = \frac{1}{4}\left( \log\frac{2\sqrt{3} + 3}{3} \right)\]

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Definite Integrals - Revision Exercise [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 20 Definite Integrals
Revision Exercise | Q 10 | पृष्ठ १२१

संबंधित प्रश्न

\[\int\limits_{- \pi/4}^{\pi/4} \frac{1}{1 + \sin x} dx\]

\[\int\limits_0^1 \frac{1}{\sqrt{1 + x} - \sqrt{x}} dx\]

\[\int\limits_0^{\pi/2} \sin^3 x\ dx\]

\[\int_0^1 x\log\left( 1 + 2x \right)dx\]

\[\int\limits_2^4 \frac{x}{x^2 + 1} dx\]

\[\int\limits_0^a \frac{x}{\sqrt{a^2 + x^2}} dx\]

\[\int\limits_0^{\pi/4} \sin^3 2t \cos 2t\ dt\]

\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]


Evaluate the following integral:

\[\int\limits_{- 3}^3 \left| x + 1 \right| dx\]

\[\int_{- \frac{\pi}{2}}^\frac{\pi}{2} \left( 2\sin\left| x \right| + \cos\left| x \right| \right)dx\]

\[\int_0^2 2x\left[ x \right]dx\]

\[\int\limits_0^{\pi/2} \left( 2 \log \cos x - \log \sin 2x \right) dx\]

 


If  \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that \[\int_a^b xf\left( x \right)dx = \frac{a + b}{2} \int_a^b f\left( x \right)dx\]

 


\[\int\limits_0^\pi \frac{x \tan x}{\sec x \ cosec x} dx\]

Evaluate the following integral:

\[\int_{- 1}^1 \left| xcos\pi x \right|dx\]

 


If f(2a − x) = −f(x), prove that

\[\int\limits_0^{2a} f\left( x \right) dx = 0 .\]

\[\int\limits_0^3 \left( x + 4 \right) dx\]

\[\int\limits_3^5 \left( 2 - x \right) dx\]

\[\int\limits_0^2 \left( 3 x^2 - 2 \right) dx\]

\[\int\limits_0^2 \left( x^2 + 2x + 1 \right) dx\]

\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]

\[\int\limits_{- 2}^1 \frac{\left| x \right|}{x} dx .\]

\[\int\limits_0^{\pi/2} \log \tan x\ dx .\]

\[\int\limits_0^{\pi/2} \frac{\sin^n x}{\sin^n x + \cos^n x} dx, n \in N .\]

\[\int\limits_0^1 \frac{1}{1 + x^2} dx\]

\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\]  equals


`int_0^1 sqrt((1 - "x")/(1 + "x")) "dx"`


Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]


\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^3 x} dx\]  is equal to

\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]


\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_{- \pi/2}^{\pi/2} \sin^9 x dx\]


\[\int\limits_0^{15} \left[ x^2 \right] dx\]


\[\int\limits_2^3 \frac{\sqrt{x}}{\sqrt{5 - x} + \sqrt{x}} dx\]


\[\int\limits_0^2 \left( 2 x^2 + 3 \right) dx\]


\[\int\limits_{- 1}^1 e^{2x} dx\]


If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.


Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×