हिंदी

If dabC∫x31+x2dx=a(1+x2)32+b1+x2+C, then ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.

विकल्प

  • a = `1/3`, b = 1

  • a = `(-1)/3`, b = 1

  • a = `(-1)/3`, b = –1

  • a = `1/3`, b = –1

MCQ
रिक्त स्थान भरें

उत्तर

If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then a = `1/3`, b = –1.

Explanation:

Let I = `intx^3/sqrt(1 + x^2) "d"x`

Put 1 + x2 = t

⇒ 2x dx = dt

⇒ x dx = `"dt"/2`

∴ I = `1/2 int "t"/sqrt("t") "dt" - 1/2 int 1/sqrt("t") "dt"`

= `1/2 int sqrt("t")  "dt" - 1/2 int "t"^((-1)/2)  "dt"`

= `1/2 xx 2/3 ("t")^(3/2) - 1/2 * 2sqrt("t") + "C"`

= `1/3(1 + x^2)^(3/2) - sqrt(1 + x^2) + "C"`

But I = `"a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`

Comparing the like terms we get,

∴ a = `1/3` and b = –1.

shaalaa.com
Definite Integrals
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise [पृष्ठ १६८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise | Q 56 | पृष्ठ १६८

संबंधित प्रश्न

\[\int\limits_4^9 \frac{1}{\sqrt{x}} dx\]

\[\int\limits_0^4 \frac{1}{\sqrt{4x - x^2}} dx\]

\[\int\limits_0^\pi \left( \sin^2 \frac{x}{2} - \cos^2 \frac{x}{2} \right) dx\]

\[\int\limits_0^{\pi/2} \frac{1}{5 + 4 \sin x} dx\]

\[\int\limits_0^1 \tan^{- 1} x\ dx\]

\[\int_0^\frac{1}{2} \frac{x \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]

\[\int\limits_0^{\pi/4} \frac{\tan^3 x}{1 + \cos 2x} dx\]

\[\int\limits_0^{\pi/2} 2 \sin x \cos x \tan^{- 1} \left( \sin x \right) dx\]

\[\int_0^\frac{\pi}{2} \sqrt{\cos x - \cos^3 x}\left( \sec^2 x - 1 \right) \cos^2 xdx\]

If f is an integrable function, show that

\[\int\limits_{- a}^a x f\left( x^2 \right) dx = 0\]

 


\[\int\limits_0^{\pi/2} \sin x\ dx\]

\[\int\limits_0^{\pi/2} \cos x\ dx\]

\[\int\limits_0^2 \left( x^2 - x \right) dx\]

\[\int\limits_{- \pi/2}^{\pi/2} \sin^3 x\ dx .\]

\[\int\limits_0^\pi \cos^5 x\ dx .\]

\[\int\limits_0^1 \sqrt{x \left( 1 - x \right)} dx\] equals

The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is 

 


\[\int\limits_0^{\pi/2} \sin\ 2x\ \log\ \tan x\ dx\]  is equal to 

\[\int\limits_0^{2a} f\left( x \right) dx\]  is equal to


\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]


\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]


\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]


\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]


\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]


\[\int\limits_2^3 e^{- x} dx\]


Evaluate the following:

`int_0^oo "e"^(-mx) x^6 "d"x`


Evaluate the following integrals as the limit of the sum:

`int_1^3 (2x + 3)  "d"x`


`int (x + 3)/(x + 4)^2 "e"^x  "d"x` = ______.


Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:


Find: `int logx/(1 + log x)^2 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×