Advertisements
Advertisements
प्रश्न
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
विकल्प
a = `1/3`, b = 1
a = `(-1)/3`, b = 1
a = `(-1)/3`, b = –1
a = `1/3`, b = –1
उत्तर
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then a = `1/3`, b = –1.
Explanation:
Let I = `intx^3/sqrt(1 + x^2) "d"x`
Put 1 + x2 = t
⇒ 2x dx = dt
⇒ x dx = `"dt"/2`
∴ I = `1/2 int "t"/sqrt("t") "dt" - 1/2 int 1/sqrt("t") "dt"`
= `1/2 int sqrt("t") "dt" - 1/2 int "t"^((-1)/2) "dt"`
= `1/2 xx 2/3 ("t")^(3/2) - 1/2 * 2sqrt("t") + "C"`
= `1/3(1 + x^2)^(3/2) - sqrt(1 + x^2) + "C"`
But I = `"a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`
Comparing the like terms we get,
∴ a = `1/3` and b = –1.
APPEARS IN
संबंधित प्रश्न
If f is an integrable function, show that
The value of \[\int\limits_{- \pi}^\pi \sin^3 x \cos^2 x\ dx\] is
\[\int\limits_0^{2a} f\left( x \right) dx\] is equal to
\[\int\limits_0^\pi \sin^3 x\left( 1 + 2 \cos x \right) \left( 1 + \cos x \right)^2 dx\]
\[\int\limits_0^{\pi/2} x^2 \cos 2x dx\]
\[\int\limits_0^1 x \left( \tan^{- 1} x \right)^2 dx\]
\[\int\limits_{- a}^a \frac{x e^{x^2}}{1 + x^2} dx\]
\[\int\limits_0^{\pi/2} \frac{x \sin x \cos x}{\sin^4 x + \cos^4 x} dx\]
\[\int\limits_2^3 e^{- x} dx\]
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_1^3 (2x + 3) "d"x`
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
Given `int "e"^"x" (("x" - 1)/("x"^2)) "dx" = "e"^"x" "f"("x") + "c"`. Then f(x) satisfying the equation is:
Find: `int logx/(1 + log x)^2 dx`