Advertisements
Advertisements
प्रश्न
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
विकल्प
1
2
3
4
उत्तर
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to 1.
Explanation:
Let I = `int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)`
= `int_((-pi)/4)^(pi/4) "dx"/(2cos^2x)`
= `1/2 int_((-pi)/4)^(pi/4) sec^2x "d"x`
= `1/2 [tan x]_((-pi)/4)^(pi/4)`
= `1/2 [tan pi/4 - tan (- pi/4)]`
= `1/2[1 + 1]`
= `1/2 xx 2`
= 1
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x)) dx` = ______.
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.
`int_0^{pi/2} log(tanx)dx` = ______
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_0^1 x tan^-1x dx` = ______
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0
⇒ `1/4 (square - square)` = 0
⇒ b4 – `square` = 0
⇒ (b2 – a2)(`square` + `square`) = 0
⇒ b2 – `square` = 0 as a2 + b2 ≠ 0
⇒ b = ± `square`
If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.
If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.
Evaluate the following limit :
`lim_("x"->3)[sqrt("x"+6)/"x"]`
Evaluate the following integral:
`int_-9^9 x^3/(4 - x^2) dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`