Advertisements
Advertisements
Question
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
Options
1
2
3
4
Solution
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to 1.
Explanation:
Let I = `int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)`
= `int_((-pi)/4)^(pi/4) "dx"/(2cos^2x)`
= `1/2 int_((-pi)/4)^(pi/4) sec^2x "d"x`
= `1/2 [tan x]_((-pi)/4)^(pi/4)`
= `1/2 [tan pi/4 - tan (- pi/4)]`
= `1/2[1 + 1]`
= `1/2 xx 2`
= 1
APPEARS IN
RELATED QUESTIONS
Evaluate : `intlogx/(1+logx)^2dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx` if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
`int (cos x + x sin x)/(x(x + cos x))`dx = ?
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?
`int_0^4 1/(1 + sqrtx)`dx = ______.
`int_-9^9 x^3/(4 - x^2)` dx = ______
`int_0^1 (1 - x)^5`dx = ______.
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
`int_0^9 1/(1 + sqrtx)` dx = ______
`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
`int (dx)/(e^x + e^(-x))` is equal to ______.
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
`int_4^9 1/sqrt(x)dx` = ______.
Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
Evaluate `int_-1^1 |x^4 - x|dx`.
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate:
`int_0^6 |x + 3|dx`