English

Dx∫-π4π4dx1+cos2x is equal to ______. - Mathematics

Advertisements
Advertisements

Question

`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.

Options

  • 1

  • 2

  • 3

  • 4

MCQ
Fill in the Blanks

Solution

`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to 1.

Explanation:

Let I = `int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)`

= `int_((-pi)/4)^(pi/4) "dx"/(2cos^2x)`

= `1/2 int_((-pi)/4)^(pi/4) sec^2x  "d"x`

= `1/2 [tan x]_((-pi)/4)^(pi/4)`

= `1/2 [tan  pi/4 - tan (- pi/4)]`

= `1/2[1 + 1]`

= `1/2 xx 2`

= 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise [Page 169]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Exercise | Q 57 | Page 169

RELATED QUESTIONS

 
 

Evaluate : `intlogx/(1+logx)^2dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


By using the properties of the definite integral, evaluate the integral:

`int_0^1 x(1-x)^n dx`


Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx`  if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.


Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


`int (cos x + x sin x)/(x(x + cos x))`dx = ?


`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?


`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?


`int_0^4 1/(1 + sqrtx)`dx = ______.


`int_-9^9 x^3/(4 - x^2)` dx = ______


`int_0^1 (1 - x)^5`dx = ______.


`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.


`int_0^9 1/(1 + sqrtx)` dx = ______ 


`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to ______.


`int (dx)/(e^x + e^(-x))` is equal to ______.


Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`


`int_4^9 1/sqrt(x)dx` = ______.


Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?


If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


Evaluate `int_-1^1 |x^4 - x|dx`.


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate:

`int_0^6 |x + 3|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×