हिंदी

∫-11|x-2|x-2dx, x ≠ 2 is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.

विकल्प

  • 1

  • – 1

  • 2

  • – 2

MCQ
रिक्त स्थान भरें

उत्तर

`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to – 2.

Explanation:

`int_-1^1 |x - 2|/(x - 2) dx`; x ≠ 2 = `[-x]_-1^1`

= – [1 + 1]

= – 2.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Delhi Set 1

संबंधित प्रश्न

If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`


\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.


Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


Evaluate :  ∫ log (1 + x2) dx


`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?


The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.


`int_0^pi sin^2x.cos^2x  dx` = ______ 


`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.


The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______ 


Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.


If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`


Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`


If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.


Evaluate `int_-1^1 |x^4 - x|dx`.


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.


Evaluate the following integral:

`int_0^1 x(1 - 5)^5`dx


 `int_-9^9 x^3/(4-x^2) dx` =______


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2)dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×