हिंदी

Evaluate: ∫25xx+7-xdx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`

योग

उत्तर

Let I = `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x).dx` ...(i)

= `int_2^5 (sqrt(2 + 5 - x))/(sqrt(2 + 5 - x) + sqrt(7 - (2 + 5 - x))).dx`  ...`[∵ int_a^b f(x)dx = int_a^b f(a + b - x)dx]`

∴ I = `int_2^5 (sqrt(7 - x))/(sqrt(7 - x) + sqrt(x)).dx` ...(ii)

Adding equations (i) and (ii), we get

2I = `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x).dx + int_2^5 sqrt(7 - x)/(sqrt(7 - x) + sqrt(x)).dx`

= `int_2^5 (sqrt(x) + sqrt(7 - x))/(sqrt(x) + sqrt(7 - x)).dx`

= `int_2^5 1.dx`

= `[x]_2^5`

∴ 2I = 5 – 2

2I = 3

I = `3/2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2024-2025 (March) Model set 1 by shaalaa.com

संबंधित प्रश्न

If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


Evaluate : `intsec^nxtanxdx`


Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx` 


By using the properties of the definite integral, evaluate the integral:

`int_0^2 xsqrt(2 -x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (2log sin x - log sin 2x)dx`


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.


Evaluate`int (1)/(x(3+log x))dx` 


The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total  revenue R is increasing.


Evaluate :  ∫ log (1 + x2) dx


Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.


Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


`int_2^4 x/(x^2 + 1)  "d"x` = ______


State whether the following statement is True or False:

`int_(-5)^5 x/(x^2 + 7)  "d"x` = 10


Evaluate `int_1^3 x^2*log x  "d"x`


Evaluate `int_0^1 x(1 - x)^5  "d"x`


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?


`int_0^{pi/2} log(tanx)dx` = ______


`int_2^3 x/(x^2 - 1)` dx = ______


`int_-2^1 dx/(x^2 + 4x + 13)` = ______


If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.


`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`


The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______ 


If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.


Evaluate the following:

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


Evaluate: `int_(-1)^3 |x^3 - x|dx`


`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.


`int_4^9 1/sqrt(x)dx` = ______.


Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?


If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.


If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.


The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.


The integral `int_0^2||x - 1| -x|dx` is equal to ______.


If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.


If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.


`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to ______.


Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`


If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.


Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.


Evaluate the following limit :

`lim_("x"->3)[sqrt("x"+6)/"x"]`


Solve the following.

`int_1^3 x^2 logx  dx`


 `int_-9^9 x^3/(4-x^2) dx` =______


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate:

`int_0^1 |2x + 1|dx`


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/(9x^2 - 1) dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×