हिंदी

The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and the present population is 1 lac, when will the city have population 4,00,000? - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and the present population is 1 lac, when will the city have population 4,00,000?

योग

उत्तर

Let ‘x’ be the population at time ‘t’ years.

∴ `dx/dt prop x`

∴ `dx/dt = kx`, where k is the constant of proportionality.

∴ `dx/x = kdt`

Integrating on both sides, we get

`int dx/x = int kdt`

∴ logx = kt + c  …(i)

When t = 0, x = 50,000

∴ log(50,000) = k(0) + c

∴ c = log(50,000)

∴ logx = kt + log(50,000) ...(ii) [From (i)]

When t = 25, x = 1,00,000, we have

log(1,00,000) = 25k + log(50000)

∴ log2 = 25k

∴ k = `1/25 log 2` …(iii)

When x = 4,00,000, we get

`log(4,00,000) = [1/25 log (2)]t + log(50,000)` ...[From (ii) and (iii)]

∴ `log[400000/50000] = t/25 log2`

∴ log8 = `t/25 log2`

∴ 3log2 = `t/25 log2`

∴ 3 = `t/25`

∴ t = 75 years.

Thus, the population will be 4,00,000 after 75 – 25 = 50 years from present date.

shaalaa.com
Application of Differential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Differential Equation and Applications - Miscellaneous Exercise 8 [पृष्ठ १७३]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
अध्याय 8 Differential Equation and Applications
Miscellaneous Exercise 8 | Q 4.09 | पृष्ठ १७३

संबंधित प्रश्न

The rate of disintegration of a radioactive element at any time t is proportional to its mass at that time. Find the time during which the original mass of 1.5 gm will disintegrate into its mass of 0.5 gm.


The rate of decay of certain substances is directly proportional to the amount present at that instant. Initially, there is 25 gm of certain substance and two hours later it is found that 9 gm are left. Find the amount left after one more hour.


Find the population of a city at any time t, given that the rate of increase of population is proportional to the population at that instant and that in a period of 40 years, the population increased from 30,000 to 40,000.


A right circular cone has height 9 cm and radius of the base 5 cm. It is inverted and water is poured into it. If at any instant the water level rises at the rate of `(pi/"A")`cm/sec, where A is the area of the water surface A at that instant, show that the vessel will be full in 75 seconds.


Radium decomposes at the rate proportional to the amount present at any time. If p percent of the amount disappears in one year, what percent of the amount of radium will be left after 2 years?


Choose the correct option from the given alternatives:

If the surrounding air is kept at 20° C and a body cools from 80° C to 70° C in 5 minutes, the temperature of the body after 15 minutes will be


Show that the general solution of differential equation `"dy"/"dx" + ("y"^2 + "y" + 1)/("x"^2 + "x" + 1) = 0` is given by (x + y + 1) = (1 - x - y - 2xy).


The normal lines to a given curve at each point (x, y) on the curve pass through (2, 0). The curve passes through (2, 3). Find the equation of the curve.


The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after t seconds.


A person’s assets start reducing in such a way that the rate of reduction of assets is proportional to the square root of the assets existing at that moment. If the assets at the beginning ax ‘ 10 lakhs and they dwindle down to ‘ 10,000 after 2 years, show that the person will be bankrupt in `2 2/9` years from the start.


If the population of a town increases at a rate proportional to the population at that time. If the population increases from 40 thousand to 60 thousand in 40 years, what will be the population in another 20 years? `("Given" sqrt(3/2) = 1.2247)`


Choose the correct alternative:

The integrating factor of `("d"y)/("d"x) + y` = e–x is


Choose the correct alternative:

The solution of `dy/dx` = 1 is ______.


The solution of `("d"y)/("d"x) + y` = 3 is  ______


The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and present population is 1 lac., when will the city have population 4,00,000?

Solution: Let p be the population at time t. 

Then the rate of increase of p is `"dp"/"dt"` which is proportional to p.

∴ `"dp"/"dt" ∝ "p"`

∴ `"dp"/"dt"` = kp, where k is a constant

∴ `"dp"/"p"` = kdt

On integrating, we get

`int "dp"/"p" = "k"int "dt"`

∴ log p = kt + c

Initially, i.e., when t = 0, let p = 100000

∴ log 100000 = k × 0 + c

∴ c = `square`

∴ log p = kt + log 100000

∴ log p – log 100000 = kt

∴ `log ("P"/100000)` = kt  ......(i)

Since the number doubled in 25 years, i.e., when t = 25, p = 200000

∴ `log (200000/100000)` = 25k

∴ k = `square`

∴ equation (i) becomes, `log("p"/100000) = square`

When p = 400000, then find t.

∴ `log(400000/100000) = "t"/25 log 2`

∴ `log 4 = "t"/25 log 2`

∴ t = `25 (log 4)/(log 2)`

∴ t = `square` years


In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, find the number of times the bacteria are increased in 12 hours.

Solution: Let x be the number of bacteria in the culture at time t.

Then the rate of increase of x is `"dx"/"dt"` which is proportional to x.

∴ `"dx"/"dt" ∝  "x"`

∴ `"dx"/"dt"` = kx, where k is a constant

∴ `square`

On integrating, we get

`int "dx"/"x" = "k" int "dt"`

∴ log x = kt + c

Initially, i.e. when t = 0, let x = x0

∴ log x0 = k × 0 + c

∴ c = `square`

∴ log x = kt + log x0 

∴ log x - log x0 = kt

∴ `log ("x"/"x"_0)`= kt    ......(1)

Since the number doubles in 4 hours, i.e. when t = 4,

x = 2x0 

∴ `log ((2"x"_0)/"x"_0)` = 4k

∴ k = `square`

∴ equation (1) becomes, `log ("x"/"x"_0) = "t"/4` log 2

When t = 12, we get

`log ("x"/"x"_0) = 12/4` log 2 = 3 log 2

∴ `log ("x"/"x"_0)` = log 23

∴ `"x"/"x"_0 = 8`

∴ x = `square`

∴ number of bacteria will be 8 times the original number in 12 hours.


The population of city doubles in 80 years, in how many years will it be triple when the rate of increase is proportional to the number of inhabitants. `("Given" log3/log2 = 1.5894)`

Solution: Let p be the population at time t.

Then the rate of increase of p is `"dp"/"dt"` which is proportional to p.

∴ `"dp"/"dt"  ∝  "p"`

∴ `"dp"/"dt"` = kp, where k is a constant

∴ `"dp"/"p"` = kdt

On integrating, we get

`int "dp"/"p" = "k" int "dt"`

∴ log p = kt + c

Initially, i.e., when t = 0, let p = N

∴ log N = k × 0 + c

∴ c = `square`

When t = 80, p = 2N

∴ log 2N = 80k + log N

∴ log 2N – log N = 80k

∴ `log ((2"N")/"N")` = 80k

∴ log (2) = 80k

∴ k = `square`

∴ p = 3N, then t = ?

∴ log p = `log2/80  "t" + log "N"`

∴ log 3N – log N = `square`

∴ t = `square` = `square` years


If the population grows at the rate of 8% per year, then the time taken for the population to be doubled, is (Given log 2 = 0.6912).


The equation of tangent at P(- 4, - 4) on the curve x2 = - 4y is ______.


The bacteria increases at the rate proportional to the number of bacteria present. If the original number 'N' doubles in 4 h, then the number of bacteria in 12 h will be ____________.


The population of a town increases at a rate proportional to the population at that time. If the population increases from 26,000 to 39,000 in 50 years, then the population in another 25 years will be ______ `(sqrt(3/2) = 1.225)`


Let the population of rabbits surviving at a time t be governed by the differential equation `(dp(t))/dt = 1/2p(t) - 200`. If p(0) = 100, then p(t) equals ______ 


If a curve y = f(x) passes through the point (1, - 1) and satisfies the differential equation, y (1 + xy) dx = x dy, then `f(-1/2)` is equal to ______ 


In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, complete the following activity to find the number of times the bacteria are increased in 12 hours.


The rate of disintegration of a radioactive element at time t is proportional to its mass at that time. The original mass of 800 gm will disintegrate into its mass of 400 gm after 5 days. Find the mass remaining after 30 days.

Solution: If x is the amount of material present at time t then `dx/dt = square`, where k is constant of proportionality.

`int dx/x = square + c` 

∴ logx = `square`

x = `square` = `square`.ec

∴ x = `square`.a where a = ec

At t = 0, x = 800

∴ a = `square`

At t = 5, x = 400

∴ e–5k = `square`

Now when t = 30 

x = `square` × `square` = 800 × (e–5k)6 = 800 × `square` = `square`.

The mass remaining after 30 days will be `square` mg.


Bacteria increase at the rate proportional to the number of bacteria present. If the original number N doubles in 3 hours, find in how many hours the number of bacteria will be 4N?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×