Advertisements
Advertisements
प्रश्न
Show that the general solution of differential equation `"dy"/"dx" + ("y"^2 + "y" + 1)/("x"^2 + "x" + 1) = 0` is given by (x + y + 1) = (1 - x - y - 2xy).
उत्तर
`"dy"/"dx" + ("y"^2 + "y" + 1)/("x"^2 + "x" + 1) = 0`
∴ `"dy"/"dx" = - (("y"^2 + "y" + 1)/("x"^2 + "x" + 1))`
∴ `1/("y"^2 + "y" + 1)"dy" = - 1/("x"^2 + "x" + 1)"dx"`
Integrating both sides, we get
`int 1/("y"^2 + "y" + 1)"dy" = - int 1/("x"^2 + "x" + 1)"dx"`
∴ `int 1/(("y"^2 + "y" + 1/4) + 3/4) "dy" = - int 1/(("x"^2 + "x" + 1/4) + 3/4)"dx"`
∴ `int 1/(("y" + 1/2)^2 + (sqrt3/2)^2)"dy" = - int 1/(("x" + 1/2)^2 + (sqrt3/2)^2)"dx"`
∴ `1/(sqrt3/2) tan^-1 [("y" + 1/2)/(sqrt3/2)] = - 1/((sqrt3/2)) tan^-1 [("x" + 1/2)/(sqrt3/2)] + "c"_1`
∴ `2/sqrt3 tan^-1 (("2y" + 1)/sqrt3) + 2/sqrt3 tan^-1 (("2x" + 1)/sqrt3) = "c"_1`
∴ `2/sqrt3 tan^-1 [((("2y" + 1)/sqrt3) + (("2x" + 1)/sqrt3))/(1 - (("2y" + 3)/sqrt3)(("2x" + 1)/sqrt3))] = "c"_1`
∴ `tan^-1 ((("2y" + 1 + 2"x" + 1)/sqrt3))/(((3 - 4"xy" - 2"y" - 2"x" - 1)/3)) = sqrt3/2 "c"_1`
∴ `(("2y" + "2x" + 2)sqrt3)/(2 - "2x" - 2"y" - 4"xy") = tan (sqrt3/2 "c"_1)`
∴ `("x + y + z")/(1 - "x" - "y" - 2"xy") = 1/sqrt3 tan (sqrt3/2 "c"_1) = "c"`, where c = `1/sqrt3 tan (sqrt3/2 "c"_1)`
∴ (x + y + 1) = c(1 - x - y - 2xy)
This is the general solution.
APPEARS IN
संबंधित प्रश्न
If the population of a country doubles in 60 years, in how many years will it be triple (treble) under the assumption that the rate of increase is proportional to the number of inhabitants?
(Given log 2 = 0.6912, log 3 = 1.0986)
If a body cools from 80°C to 50°C at room temperature of 25°C in 30 minutes, find the temperature of the body after 1 hour.
If a body cools from 80°C to 50°C at room temperature of 25°C in 30 minutes, find the temperature of the body after 1 hour.
The rate of disintegration of a radioactive element at any time t is proportional to its mass at that time. Find the time during which the original mass of 1.5 gm will disintegrate into its mass of 0.5 gm.
A body cools according to Newton’s law from 100° C to 60° C in 20 minutes. The temperature of the surrounding being 20° C. How long will it take to cool down to 30° C?
A person’s assets start reducing in such a way that the rate of reduction of assets is proportional to the square root of the assets existing at that moment. If the assets at the beginning ax ‘ 10 lakhs and they dwindle down to ‘ 10,000 after 2 years, show that the person will be bankrupt in `2 2/9` years from the start.
The population of a town increases at a rate proportional to the population at that time. If the population increases from 40 thousands to 60 thousands in 40 years, what will be the population in another 20 years?
(Given: `sqrt(3/2)= 1.2247)`
The rate of depreciation `(dV)/ dt` of a machine is inversely proportional to the square of t + 1, where V is the value of the machine t years after it was purchased. The initial value of the machine was ₹ 8,00,000 and its value decreased ₹1,00,000 in the first year. Find its value after 6 years.
The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and the present population is 1 lac, when will the city have population 4,00,000?
The rate of growth of bacteria is proportional to the number present. If initially, there were 1000 bacteria and the number doubles in 1 hour, find the number of bacteria after `5/2` hours `("Given" sqrt(2) = 1.414)`
Choose the correct alternative:
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Choose the correct alternative:
The integrating factor of `("d"y)/("d"x) + y` = e–x is
Choose the correct alternative:
The solution of `dy/dx` = 1 is ______.
Choose the correct alternative:
The solution of `("d"y)/("d"x) + x^2/y^2` = 0 is
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is ______
The solution of `("d"y)/("d"x) + y` = 3 is ______
Integrating factor of `("d"y)/("d"x) + y/x` = x3 – 3 is ______
The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and present population is 1 lac., when will the city have population 4,00,000?
Solution: Let p be the population at time t.
Then the rate of increase of p is `"dp"/"dt"` which is proportional to p.
∴ `"dp"/"dt" ∝ "p"`
∴ `"dp"/"dt"` = kp, where k is a constant
∴ `"dp"/"p"` = kdt
On integrating, we get
`int "dp"/"p" = "k"int "dt"`
∴ log p = kt + c
Initially, i.e., when t = 0, let p = 100000
∴ log 100000 = k × 0 + c
∴ c = `square`
∴ log p = kt + log 100000
∴ log p – log 100000 = kt
∴ `log ("P"/100000)` = kt ......(i)
Since the number doubled in 25 years, i.e., when t = 25, p = 200000
∴ `log (200000/100000)` = 25k
∴ k = `square`
∴ equation (i) becomes, `log("p"/100000) = square`
When p = 400000, then find t.
∴ `log(400000/100000) = "t"/25 log 2`
∴ `log 4 = "t"/25 log 2`
∴ t = `25 (log 4)/(log 2)`
∴ t = `square` years
The population of city doubles in 80 years, in how many years will it be triple when the rate of increase is proportional to the number of inhabitants. `("Given" log3/log2 = 1.5894)`
Solution: Let p be the population at time t.
Then the rate of increase of p is `"dp"/"dt"` which is proportional to p.
∴ `"dp"/"dt" ∝ "p"`
∴ `"dp"/"dt"` = kp, where k is a constant
∴ `"dp"/"p"` = kdt
On integrating, we get
`int "dp"/"p" = "k" int "dt"`
∴ log p = kt + c
Initially, i.e., when t = 0, let p = N
∴ log N = k × 0 + c
∴ c = `square`
When t = 80, p = 2N
∴ log 2N = 80k + log N
∴ log 2N – log N = 80k
∴ `log ((2"N")/"N")` = 80k
∴ log (2) = 80k
∴ k = `square`
∴ p = 3N, then t = ?
∴ log p = `log2/80 "t" + log "N"`
∴ log 3N – log N = `square`
∴ t = `square` = `square` years
If the population grows at the rate of 8% per year, then the time taken for the population to be doubled, is (Given log 2 = 0.6912).
The bacteria increases at the rate proportional to the number of bacteria present. If the original number 'N' doubles in 4 h, then the number of bacteria in 12 h will be ____________.
If r is the radius of spherical balloon at time t and the surface area of balloon changes at a constant rate K, then ______.
The population of a town increases at a rate proportional to the population at that time. If the population increases from 26,000 to 39,000 in 50 years, then the population in another 25 years will be ______ `(sqrt(3/2) = 1.225)`
Let the population of rabbits surviving at a time t be governed by the differential equation `(dp(t))/dt = 1/2p(t) - 200`. If p(0) = 100, then p(t) equals ______
If a curve y = f(x) passes through the point (1, - 1) and satisfies the differential equation, y (1 + xy) dx = x dy, then `f(-1/2)` is equal to ______
In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, complete the following activity to find the number of times the bacteria are increased in 12 hours.
If `(dy)/(dx)` = y + 3 > 0 and y = (0) = 2, then y (in 2) is equal to ______.
The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and the present population is 1,00,000, when will the city have population 4,00,000?
Let ‘p’ be the population at time ‘t’ years.
∴ `("dp")/"dt" prop "p"`
∴ Differential equation can be written as `("dp")/"dt" = "kp"`
where k is constant of proportionality.
∴ `("dp")/"p" = "k.dt"`
On integrating we get
`square` = kt + c ...(i)
(i) Where t = 0, p = 1,00,000
∴ from (i)
log 1,00,000 = k(0) + c
∴ c = `square`
∴ log `("p"/(1,00,000)) = "kt"` ...(ii)
(ii) When t = 25, p = 2,00,000
as population doubles in 25 years
∴ from (ii) log2 = 25k
∴ k = `square`
∴ log`("p"/(1,00,000)) = (1/25log2).t`
(iii) ∴ when p = 4,00,000
`log ((4,00,000)/(1,00,000)) = (1/25log2).t`
∴ `log 4 = (1/25 log2).t`
∴ t = `square ` years