हिंदी

The rate of disintegration of a radioactive element at any time t is proportional to its mass at that time. Find the time during which the original mass of 1.5 gm will - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The rate of disintegration of a radioactive element at any time t is proportional to its mass at that time. Find the time during which the original mass of 1.5 gm will disintegrate into its mass of 0.5 gm.

योग

उत्तर

Let m be the mass of the radioactive element at time t.

Then the rate of disintegration is `"dm"/"dt"` which is proportional to m.

∴ `"dm"/"dt" prop "m"`

∴ `"dm"/"dt"` = - km, where k > 0

∴ `"dm"/"m"` = - k dt

On integrating, we get

`int 1/"m" "dm" = - "k" int "dt" + "c"`

∴ log m = - kt + c

Initially, i.e. when t = 0, m = 1.5

∴ log(1.5) = - k × 0 + c      ∴ c = log`(3/2)`

∴ log m = - kt + log`(3/2)`

∴ log m - log`3/2` = - kt

∴ `log("2m"/3)` = - kt

When  m = 0.5 = `1/2`, then

`log ((2 xx 1/2)/3) = - "kt"`

∴ `log (1/3)` = - kt

∴ log(3)-1 = - kt

∴ - log 3 = - kt

∴ t = `1/"k" log 3`

∴ the original mass will disintegrate to 0.5 gm when t = `1/"k" log 3`

shaalaa.com
Application of Differential Equations
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Differential Equations - Exercise 6.6 [पृष्ठ २१३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 6 Differential Equations
Exercise 6.6 | Q 5 | पृष्ठ २१३

संबंधित प्रश्न

If the population of a country doubles in 60 years, in how many years will it be triple (treble) under the assumption that the rate of increase is proportional to the number of inhabitants?
(Given log 2 = 0.6912, log 3 = 1.0986)


If a body cools from 80°C to 50°C at room temperature of 25°C in 30 minutes, find the temperature of the body after 1 hour.


Find the population of a city at any time t, given that the rate of increase of population is proportional to the population at that instant and that in a period of 40 years, the population increased from 30,000 to 40,000.


A body cools according to Newton’s law from 100° C to 60° C in 20 minutes. The temperature of the surrounding being 20° C. How long will it take to cool down to 30° C?


A right circular cone has height 9 cm and radius of the base 5 cm. It is inverted and water is poured into it. If at any instant the water level rises at the rate of `(pi/"A")`cm/sec, where A is the area of the water surface A at that instant, show that the vessel will be full in 75 seconds.


Assume that a spherical raindrop evaporates at a rate proportional to its surface area. If its radius originally is 3 mm and 1 hour later has been reduced to 2 mm, find an expression for the radius of the raindrop at any time t.


Choose the correct option from the given alternatives:

The decay rate of certain substances is directly proportional to the amount present at that instant. Initially there are 27 grams of substance and 3 hours later it is found that 8 grams left. The amount left after one more hour is


Choose the correct option from the given alternatives:

If the surrounding air is kept at 20° C and a body cools from 80° C to 70° C in 5 minutes, the temperature of the body after 15 minutes will be


The normal lines to a given curve at each point (x, y) on the curve pass through (2, 0). The curve passes through (2, 3). Find the equation of the curve.


The population of a town increases at a rate proportional to the population at that time. If the population increases from 40 thousands to 60 thousands in 40 years, what will be the population in another 20 years?

(Given: `sqrt(3/2)= 1.2247)`


The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and the present population is 1 lac, when will the city have population 4,00,000?


Choose the correct alternative:

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Choose the correct alternative:

The integrating factor of `("d"y)/("d"x) + y` = e–x is


Choose the correct alternative:

The integrating factor of `("d"^2y)/("d"x^2) - y` = ex, is e–x, then its solution is


Choose the correct alternative:

The solution of `dy/dx` = 1 is ______.


Choose the correct alternative:

The solution of `("d"y)/("d"x) + x^2/y^2` = 0 is


The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is ______


Integrating factor of `("d"y)/("d"x) + y/x` = x3 – 3 is ______


The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and present population is 1 lac., when will the city have population 4,00,000?

Solution: Let p be the population at time t. 

Then the rate of increase of p is `"dp"/"dt"` which is proportional to p.

∴ `"dp"/"dt" ∝ "p"`

∴ `"dp"/"dt"` = kp, where k is a constant

∴ `"dp"/"p"` = kdt

On integrating, we get

`int "dp"/"p" = "k"int "dt"`

∴ log p = kt + c

Initially, i.e., when t = 0, let p = 100000

∴ log 100000 = k × 0 + c

∴ c = `square`

∴ log p = kt + log 100000

∴ log p – log 100000 = kt

∴ `log ("P"/100000)` = kt  ......(i)

Since the number doubled in 25 years, i.e., when t = 25, p = 200000

∴ `log (200000/100000)` = 25k

∴ k = `square`

∴ equation (i) becomes, `log("p"/100000) = square`

When p = 400000, then find t.

∴ `log(400000/100000) = "t"/25 log 2`

∴ `log 4 = "t"/25 log 2`

∴ t = `25 (log 4)/(log 2)`

∴ t = `square` years


In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, find the number of times the bacteria are increased in 12 hours.

Solution: Let x be the number of bacteria in the culture at time t.

Then the rate of increase of x is `"dx"/"dt"` which is proportional to x.

∴ `"dx"/"dt" ∝  "x"`

∴ `"dx"/"dt"` = kx, where k is a constant

∴ `square`

On integrating, we get

`int "dx"/"x" = "k" int "dt"`

∴ log x = kt + c

Initially, i.e. when t = 0, let x = x0

∴ log x0 = k × 0 + c

∴ c = `square`

∴ log x = kt + log x0 

∴ log x - log x0 = kt

∴ `log ("x"/"x"_0)`= kt    ......(1)

Since the number doubles in 4 hours, i.e. when t = 4,

x = 2x0 

∴ `log ((2"x"_0)/"x"_0)` = 4k

∴ k = `square`

∴ equation (1) becomes, `log ("x"/"x"_0) = "t"/4` log 2

When t = 12, we get

`log ("x"/"x"_0) = 12/4` log 2 = 3 log 2

∴ `log ("x"/"x"_0)` = log 23

∴ `"x"/"x"_0 = 8`

∴ x = `square`

∴ number of bacteria will be 8 times the original number in 12 hours.


If the population grows at the rate of 8% per year, then the time taken for the population to be doubled, is (Given log 2 = 0.6912).


The rate of decay of certain substance is directly proportional to the amount present at that instant. Initially, there are 27 gm of certain substance and 3 h later it is found that 8 gm are left, then the amount left after one more hour is ______.


If the lengths of the transverse axis and the latus rectum of a hyperbola are 6 and `8/3` respectively, then the equation of the hyperbola is ______.


The population of a town increases at a rate proportional to the population at that time. If the population increases from 26,000 to 39,000 in 50 years, then the population in another 25 years will be ______ `(sqrt(3/2) = 1.225)`


The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 7 hours, then in 35 hours its number would be ______.


The length of the perimeter of a sector of a circle is 24 cm, the maximum area of the sector is ______.


The rate of disintegration of a radioactive element at time t is proportional to its mass at that time. The original mass of 800 gm will disintegrate into its mass of 400 gm after 5 days. Find the mass remaining after 30 days.

Solution: If x is the amount of material present at time t then `dx/dt = square`, where k is constant of proportionality.

`int dx/x = square + c` 

∴ logx = `square`

x = `square` = `square`.ec

∴ x = `square`.a where a = ec

At t = 0, x = 800

∴ a = `square`

At t = 5, x = 400

∴ e–5k = `square`

Now when t = 30 

x = `square` × `square` = 800 × (e–5k)6 = 800 × `square` = `square`.

The mass remaining after 30 days will be `square` mg.


If `(dy)/(dx)` = y + 3 > 0 and y = (0) = 2, then y (in 2) is equal to ______.


In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, find the number of times the bacteria are increased in 12 hours.

Solution:

Let N be the number of bacteria present at time ‘t’.

Since the rate of increase of N is proportional to N, the differential equation can be written as –

`(dN)/dt αN`

∴ `(dN)/dt` = KN, where K is constant of proportionality

∴ `(dN)/N` = k . dt

∴ `int 1/N dN = K int 1 . dt`

∴ log N = `square` + C   ...(1)

When t = 0, N = N0 where N0 is initial number of bacteria.

∴ log N0 = K × 0 + C

∴ C = log N0

Also when t = 4, N = 2N0

∴ log (2 N0) = K . 4 + `square`   ...[From (1)]

∴ `log((2N_0)/N_0)` = 4K,

∴ log 2 = 4K

∴ K = `square`   ...(2)

Now N = ? when t = 12

From (1) and (2)

log N = `1/4 log 2  . (12) + log N_0`

log N – log N0 = 3 log 2

∴ `log(N_0/N_0)` = `square`

∴ N = 8 N0

∴ Bacteria are increased 8 times in 12 hours.


The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and the present population is 1,00,000, when will the city have population 4,00,000?

Let ‘p’ be the population at time ‘t’ years.

∴ `("dp")/"dt" prop "p"`

∴ Differential equation can be written as  `("dp")/"dt" = "kp"`

where k is constant of proportionality.

∴ `("dp")/"p" = "k.dt"`

On integrating we get

`square` = kt + c   ...(i)

(i) Where t = 0, p = 1,00,000

∴ from (i)

log 1,00,000 = k(0) + c

∴  c = `square`

∴  log `("p"/(1,00,000)) = "kt"`       ...(ii)

(ii) When t = 25, p = 2,00,000

as population doubles in 25 years

∴ from (ii) log2 = 25k

∴  k = `square`

∴  log`("p"/(1,00,000)) = (1/25log2).t`

(iii) ∴ when p = 4,00,000

`log ((4,00,000)/(1,00,000)) = (1/25log2).t`

∴ `log 4 = (1/25 log2).t`

∴ t = `square ` years


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×