Advertisements
Advertisements
Question
The rate of disintegration of a radioactive element at any time t is proportional to its mass at that time. Find the time during which the original mass of 1.5 gm will disintegrate into its mass of 0.5 gm.
Solution
Let m be the mass of the radioactive element at time t.
Then the rate of disintegration is `"dm"/"dt"` which is proportional to m.
∴ `"dm"/"dt" prop "m"`
∴ `"dm"/"dt"` = - km, where k > 0
∴ `"dm"/"m"` = - k dt
On integrating, we get
`int 1/"m" "dm" = - "k" int "dt" + "c"`
∴ log m = - kt + c
Initially, i.e. when t = 0, m = 1.5
∴ log(1.5) = - k × 0 + c ∴ c = log`(3/2)`
∴ log m = - kt + log`(3/2)`
∴ log m - log`3/2` = - kt
∴ `log("2m"/3)` = - kt
When m = 0.5 = `1/2`, then
`log ((2 xx 1/2)/3) = - "kt"`
∴ `log (1/3)` = - kt
∴ log(3)-1 = - kt
∴ - log 3 = - kt
∴ t = `1/"k" log 3`
∴ the original mass will disintegrate to 0.5 gm when t = `1/"k" log 3`
APPEARS IN
RELATED QUESTIONS
If the population of a country doubles in 60 years, in how many years will it be triple (treble) under the assumption that the rate of increase is proportional to the number of inhabitants?
(Given log 2 = 0.6912, log 3 = 1.0986)
If a body cools from 80°C to 50°C at room temperature of 25°C in 30 minutes, find the temperature of the body after 1 hour.
Find the population of a city at any time t, given that the rate of increase of population is proportional to the population at that instant and that in a period of 40 years, the population increased from 30,000 to 40,000.
A body cools according to Newton’s law from 100° C to 60° C in 20 minutes. The temperature of the surrounding being 20° C. How long will it take to cool down to 30° C?
Choose the correct option from the given alternatives:
If the surrounding air is kept at 20° C and a body cools from 80° C to 70° C in 5 minutes, the temperature of the body after 15 minutes will be
Show that the general solution of differential equation `"dy"/"dx" + ("y"^2 + "y" + 1)/("x"^2 + "x" + 1) = 0` is given by (x + y + 1) = (1 - x - y - 2xy).
The normal lines to a given curve at each point (x, y) on the curve pass through (2, 0). The curve passes through (2, 3). Find the equation of the curve.
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after t seconds.
The population of a town increases at a rate proportional to the population at that time. If the population increases from 40 thousands to 60 thousands in 40 years, what will be the population in another 20 years?
(Given: `sqrt(3/2)= 1.2247)`
The rate of depreciation `(dV)/ dt` of a machine is inversely proportional to the square of t + 1, where V is the value of the machine t years after it was purchased. The initial value of the machine was ₹ 8,00,000 and its value decreased ₹1,00,000 in the first year. Find its value after 6 years.
The rate of growth of bacteria is proportional to the number present. If initially, there were 1000 bacteria and the number doubles in 1 hour, find the number of bacteria after `5/2` hours `("Given" sqrt(2) = 1.414)`
Choose the correct alternative:
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Choose the correct alternative:
The integrating factor of `("d"^2y)/("d"x^2) - y` = ex, is e–x, then its solution is
Choose the correct alternative:
The solution of `dy/dx` = 1 is ______.
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is ______
The solution of `("d"y)/("d"x) + y` = 3 is ______
The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and present population is 1 lac., when will the city have population 4,00,000?
Solution: Let p be the population at time t.
Then the rate of increase of p is `"dp"/"dt"` which is proportional to p.
∴ `"dp"/"dt" ∝ "p"`
∴ `"dp"/"dt"` = kp, where k is a constant
∴ `"dp"/"p"` = kdt
On integrating, we get
`int "dp"/"p" = "k"int "dt"`
∴ log p = kt + c
Initially, i.e., when t = 0, let p = 100000
∴ log 100000 = k × 0 + c
∴ c = `square`
∴ log p = kt + log 100000
∴ log p – log 100000 = kt
∴ `log ("P"/100000)` = kt ......(i)
Since the number doubled in 25 years, i.e., when t = 25, p = 200000
∴ `log (200000/100000)` = 25k
∴ k = `square`
∴ equation (i) becomes, `log("p"/100000) = square`
When p = 400000, then find t.
∴ `log(400000/100000) = "t"/25 log 2`
∴ `log 4 = "t"/25 log 2`
∴ t = `25 (log 4)/(log 2)`
∴ t = `square` years
Find the population of city at any time t given that rate of increase of population is proportional to the population at that instant and that in a period of 40 years the population increased from 30000 to 40000.
Solution: Let p be the population at time t.
Then the rate of increase of p is `"dp"/"dt"` which is proportional to p.
∴ `"dp"/"dt" prop "p"`
∴ `"dp"/"dt"` = kp, where k is a constant.
∴ `"dp"/"p"` = k dt
On integrating, we get
`int "dp"/"p" = "k" int "dt"`
∴ log p = kt + c
Initially, i.e. when t = 0, let p = 30000
∴ log 30000 = k × 0 + c
∴ c = `square`
∴ log p = kt + log 30000
∴ log p - log 30000 = kt
∴ `log("p"/30000)` = kt .....(1)
when t = 40, p = 40000
∴ `log (40000/30000) = 40"k"`
∴ k = `square`
∴ equation (1) becomes, `log ("p"/30000)` = `square`
∴ `log ("p"/30000) = "t"/40 log (4/3)`
∴ p = `square`
Bacteria increases at the rate proportional to the number of bacteria present. If the original number N doubles in 4 hours, find in how many hours the number of bacteria will be 16N.
Solution: Let x be the number of bacteria in the culture at time t.
Then the rate of increase of x is `("d"x)/"dt"` which is proportional to x.
∴ `("d"x)/"dt" ∝ x`
∴ `("d"x)/"dt"` = kx, where k is a constant
∴ `("d"x)/x` = kdt
On integrating, we get
`int ("d"x)/x = "k" int "dt"`
∴ log x = kt + c .....(1)
∴ x = aekt where a = ec
Initially, i.e.,when t = 0, let x = N
∴ N = aek(0)
∴ a = `square`
∴ a = N, x = Nekt ......(2)
When t = 4, x = 2N
From equation (2), 2N = Ne4k
∴ e4k = 2
∴ ek = `square`
Now we have to find out t, when x = 16N
From equation (2),
16N = Nekt
∴ 16 = ekt
∴ `"t"/4 = square` hours
Hence, number of bacteria will be 16N in `square` hours
The rate of decay of certain substance is directly proportional to the amount present at that instant. Initially, there are 27 gm of certain substance and 3 h later it is found that 8 gm are left, then the amount left after one more hour is ______.
The equation of tangent at P(- 4, - 4) on the curve x2 = - 4y is ______.
The bacteria increases at the rate proportional to the number of bacteria present. If the original number 'N' doubles in 4 h, then the number of bacteria in 12 h will be ____________.
If r is the radius of spherical balloon at time t and the surface area of balloon changes at a constant rate K, then ______.
The population of a town increases at a rate proportional to the population at that time. If the population increases from 26,000 to 39,000 in 50 years, then the population in another 25 years will be ______ `(sqrt(3/2) = 1.225)`
The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 7 hours, then in 35 hours its number would be ______.
If a curve y = f(x) passes through the point (1, - 1) and satisfies the differential equation, y (1 + xy) dx = x dy, then `f(-1/2)` is equal to ______
In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, complete the following activity to find the number of times the bacteria are increased in 12 hours.
If `(dy)/(dx)` = y + 3 > 0 and y = (0) = 2, then y (in 2) is equal to ______.
Bacteria increase at the rate proportional to the number of bacteria present. If the original number N doubles in 3 hours, find in how many hours the number of bacteria will be 4N?
The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and the present population is 1,00,000, when will the city have population 4,00,000?
Let ‘p’ be the population at time ‘t’ years.
∴ `("dp")/"dt" prop "p"`
∴ Differential equation can be written as `("dp")/"dt" = "kp"`
where k is constant of proportionality.
∴ `("dp")/"p" = "k.dt"`
On integrating we get
`square` = kt + c ...(i)
(i) Where t = 0, p = 1,00,000
∴ from (i)
log 1,00,000 = k(0) + c
∴ c = `square`
∴ log `("p"/(1,00,000)) = "kt"` ...(ii)
(ii) When t = 25, p = 2,00,000
as population doubles in 25 years
∴ from (ii) log2 = 25k
∴ k = `square`
∴ log`("p"/(1,00,000)) = (1/25log2).t`
(iii) ∴ when p = 4,00,000
`log ((4,00,000)/(1,00,000)) = (1/25log2).t`
∴ `log 4 = (1/25 log2).t`
∴ t = `square ` years