English

The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and present population is 1 lac., when will the city have population 4,00,000? - Mathematics and Statistics

Advertisements
Advertisements

Question

The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and present population is 1 lac., when will the city have population 4,00,000?

Solution: Let p be the population at time t. 

Then the rate of increase of p is `"dp"/"dt"` which is proportional to p.

∴ `"dp"/"dt" ∝ "p"`

∴ `"dp"/"dt"` = kp, where k is a constant

∴ `"dp"/"p"` = kdt

On integrating, we get

`int "dp"/"p" = "k"int "dt"`

∴ log p = kt + c

Initially, i.e., when t = 0, let p = 100000

∴ log 100000 = k × 0 + c

∴ c = `square`

∴ log p = kt + log 100000

∴ log p – log 100000 = kt

∴ `log ("P"/100000)` = kt  ......(i)

Since the number doubled in 25 years, i.e., when t = 25, p = 200000

∴ `log (200000/100000)` = 25k

∴ k = `square`

∴ equation (i) becomes, `log("p"/100000) = square`

When p = 400000, then find t.

∴ `log(400000/100000) = "t"/25 log 2`

∴ `log 4 = "t"/25 log 2`

∴ t = `25 (log 4)/(log 2)`

∴ t = `square` years

Fill in the Blanks
Sum

Solution

Let p be the population at time t.

Then the rate of increase of p is `"dp"/"dt"` which is proportional to p.

∴ `"dp"/"dt" ∝ "p"`

∴ `"dp"/"dt"` = kp, where k is a constant

∴ `"dp"/"p"` = kdt

On integrating, we get

`int "dp"/"p" = "k"int "dt"`

∴ log p = kt + c

Initially, i.e., when t = 0, let p = 100000

∴ log 100000 = k × 0 + c

∴ c = log 100000

∴ log p = kt + log 100000

∴ log p – log 100000 = kt

∴ `log ("P"/100000)` = kt  ......(i)

Since the number doubled in 25 years, i.e., when t = 25, p = 200000

∴ `log (200000/100000)` = 25k

∴ k = `1/25 log 2`

∴ equation (i) becomes, `log("p"/100000)` = `"t"/25 log 2`

When p = 400000, then find t.

∴ `log(400000/100000) = "t"/25 log 2`

∴ `log 4 = "t"/25 log 2`

∴ t = `25 (log 4)/(log 2)`

∴ t = `25 (2 log 2)/(log 2)`

∴ t = 50 years

shaalaa.com
Application of Differential Equations
  Is there an error in this question or solution?
Chapter 1.8: Differential Equation and Applications - Q.6

APPEARS IN

SCERT Maharashtra Mathematics and Statistics (Commerce) [English] 12 Standard HSC
Chapter 1.8 Differential Equation and Applications
Q.6 | Q 3

RELATED QUESTIONS

If a body cools from 80°C to 50°C at room temperature of 25°C in 30 minutes, find the temperature of the body after 1 hour.


The rate of disintegration of a radioactive element at any time t is proportional to its mass at that time. Find the time during which the original mass of 1.5 gm will disintegrate into its mass of 0.5 gm.


Find the population of a city at any time t, given that the rate of increase of population is proportional to the population at that instant and that in a period of 40 years, the population increased from 30,000 to 40,000.


A body cools according to Newton’s law from 100° C to 60° C in 20 minutes. The temperature of the surrounding being 20° C. How long will it take to cool down to 30° C?


A right circular cone has height 9 cm and radius of the base 5 cm. It is inverted and water is poured into it. If at any instant the water level rises at the rate of `(pi/"A")`cm/sec, where A is the area of the water surface A at that instant, show that the vessel will be full in 75 seconds.


Choose the correct option from the given alternatives:

If the surrounding air is kept at 20° C and a body cools from 80° C to 70° C in 5 minutes, the temperature of the body after 15 minutes will be


Choose the correct option from the given alternatives:

If the surrounding air is kept at 20° C and a body cools from 80° C to 70° C in 5 minutes, the temperature of the body after 15 minutes will be


Show that the general solution of differential equation `"dy"/"dx" + ("y"^2 + "y" + 1)/("x"^2 + "x" + 1) = 0` is given by (x + y + 1) = (1 - x - y - 2xy).


The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and the present population is 1 lac, when will the city have population 4,00,000?


The rate of growth of bacteria is proportional to the number present. If initially, there were 1000 bacteria and the number doubles in 1 hour, find the number of bacteria after `5/2` hours  `("Given"  sqrt(2) = 1.414)`


Choose the correct alternative:

Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in


Choose the correct alternative:

The solution of `("d"y)/("d"x) + x^2/y^2` = 0 is


Integrating factor of `("d"y)/("d"x) + y/x` = x3 – 3 is ______


The equation of tangent at P(- 4, - 4) on the curve x2 = - 4y is ______.


If the lengths of the transverse axis and the latus rectum of a hyperbola are 6 and `8/3` respectively, then the equation of the hyperbola is ______.


If r is the radius of spherical balloon at time t and the surface area of balloon changes at a constant rate K, then ______.


Let the population of rabbits surviving at a time t be governed by the differential equation `(dp(t))/dt = 1/2p(t) - 200`. If p(0) = 100, then p(t) equals ______ 


The rate of growth of bacteria is proportional to the number present. If initially, there are 1000 bacteria and the number doubles in 1 hour, the number of bacteria after `21/2`  hours will be ______. `(sqrt(2) = 1.414)`


The rate of disintegration of a radioactive element at time t is proportional to its mass at that time. The original mass of 800 gm will disintegrate into its mass of 400 gm after 5 days. Find the mass remaining after 30 days.

Solution: If x is the amount of material present at time t then `dx/dt = square`, where k is constant of proportionality.

`int dx/x = square + c` 

∴ logx = `square`

x = `square` = `square`.ec

∴ x = `square`.a where a = ec

At t = 0, x = 800

∴ a = `square`

At t = 5, x = 400

∴ e–5k = `square`

Now when t = 30 

x = `square` × `square` = 800 × (e–5k)6 = 800 × `square` = `square`.

The mass remaining after 30 days will be `square` mg.


If `(dy)/(dx)` = y + 3 > 0 and y = (0) = 2, then y (in 2) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×