मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and present population is 1 lac., when will the city have population 4,00,000? - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and present population is 1 lac., when will the city have population 4,00,000?

Solution: Let p be the population at time t. 

Then the rate of increase of p is `"dp"/"dt"` which is proportional to p.

∴ `"dp"/"dt" ∝ "p"`

∴ `"dp"/"dt"` = kp, where k is a constant

∴ `"dp"/"p"` = kdt

On integrating, we get

`int "dp"/"p" = "k"int "dt"`

∴ log p = kt + c

Initially, i.e., when t = 0, let p = 100000

∴ log 100000 = k × 0 + c

∴ c = `square`

∴ log p = kt + log 100000

∴ log p – log 100000 = kt

∴ `log ("P"/100000)` = kt  ......(i)

Since the number doubled in 25 years, i.e., when t = 25, p = 200000

∴ `log (200000/100000)` = 25k

∴ k = `square`

∴ equation (i) becomes, `log("p"/100000) = square`

When p = 400000, then find t.

∴ `log(400000/100000) = "t"/25 log 2`

∴ `log 4 = "t"/25 log 2`

∴ t = `25 (log 4)/(log 2)`

∴ t = `square` years

रिकाम्या जागा भरा
बेरीज

उत्तर

Let p be the population at time t.

Then the rate of increase of p is `"dp"/"dt"` which is proportional to p.

∴ `"dp"/"dt" ∝ "p"`

∴ `"dp"/"dt"` = kp, where k is a constant

∴ `"dp"/"p"` = kdt

On integrating, we get

`int "dp"/"p" = "k"int "dt"`

∴ log p = kt + c

Initially, i.e., when t = 0, let p = 100000

∴ log 100000 = k × 0 + c

∴ c = log 100000

∴ log p = kt + log 100000

∴ log p – log 100000 = kt

∴ `log ("P"/100000)` = kt  ......(i)

Since the number doubled in 25 years, i.e., when t = 25, p = 200000

∴ `log (200000/100000)` = 25k

∴ k = `1/25 log 2`

∴ equation (i) becomes, `log("p"/100000)` = `"t"/25 log 2`

When p = 400000, then find t.

∴ `log(400000/100000) = "t"/25 log 2`

∴ `log 4 = "t"/25 log 2`

∴ t = `25 (log 4)/(log 2)`

∴ t = `25 (2 log 2)/(log 2)`

∴ t = 50 years

shaalaa.com
Application of Differential Equations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.8: Differential Equation and Applications - Q.6

संबंधित प्रश्‍न

If a body cools from 80°C to 50°C at room temperature of 25°C in 30 minutes, find the temperature of the body after 1 hour.


If a body cools from 80°C to 50°C at room temperature of 25°C in 30 minutes, find the temperature of the body after 1 hour.


The rate of growth of bacteria is proportional to the number present. If initially, there were 1000 bacteria and the number doubles in 1 hour, find the number of bacteria after `2 1/2` hours.
[Take `sqrt2 = 1.414`]


The rate of disintegration of a radioactive element at any time t is proportional to its mass at that time. Find the time during which the original mass of 1.5 gm will disintegrate into its mass of 0.5 gm.


A right circular cone has height 9 cm and radius of the base 5 cm. It is inverted and water is poured into it. If at any instant the water level rises at the rate of `(pi/"A")`cm/sec, where A is the area of the water surface A at that instant, show that the vessel will be full in 75 seconds.


Choose the correct option from the given alternatives:

If the surrounding air is kept at 20° C and a body cools from 80° C to 70° C in 5 minutes, the temperature of the body after 15 minutes will be


A person’s assets start reducing in such a way that the rate of reduction of assets is proportional to the square root of the assets existing at that moment. If the assets at the beginning ax ‘ 10 lakhs and they dwindle down to ‘ 10,000 after 2 years, show that the person will be bankrupt in `2 2/9` years from the start.


If the population of a town increases at a rate proportional to the population at that time. If the population increases from 40 thousand to 60 thousand in 40 years, what will be the population in another 20 years? `("Given" sqrt(3/2) = 1.2247)`


The rate of growth of bacteria is proportional to the number present. If initially, there were 1000 bacteria and the number doubles in 1 hour, find the number of bacteria after `5/2` hours  `("Given"  sqrt(2) = 1.414)`


Choose the correct alternative:

The integrating factor of `("d"y)/("d"x) + y` = e–x is


Bacteria increases at the rate proportional to the number of bacteria present. If the original number N doubles in 4 hours, find in how many hours the number of bacteria will be 16N.

Solution: Let x be the number of bacteria in the culture at time t.

Then the rate of increase of x is `("d"x)/"dt"` which is proportional to x.

∴ `("d"x)/"dt" ∝ x`

∴ `("d"x)/"dt"` = kx, where k is a constant

∴ `("d"x)/x` = kdt

On integrating, we get

`int ("d"x)/x = "k" int "dt"`

∴ log x = kt + c    .....(1)

∴ x = aekt where a = e

Initially, i.e.,when t = 0, let x = N

∴ N = aek(0)

∴ a = `square`

∴ a = N, x = Nekt    ......(2)

When t = 4, x = 2N

From equation (2), 2N = Ne4k

∴ e4k = 2

∴  e= `square`

Now we have to find out t, when x = 16N

From equation (2),

16N = Nekt 

∴ 16 = ekt 

∴ `"t"/4 = square` hours

Hence, number of bacteria will be 16N in `square` hours


If the population grows at the rate of 8% per year, then the time taken for the population to be doubled, is (Given log 2 = 0.6912).


The rate of decay of certain substance is directly proportional to the amount present at that instant. Initially, there are 27 gm of certain substance and 3 h later it is found that 8 gm are left, then the amount left after one more hour is ______.


If the lengths of the transverse axis and the latus rectum of a hyperbola are 6 and `8/3` respectively, then the equation of the hyperbola is ______.


If r is the radius of spherical balloon at time t and the surface area of balloon changes at a constant rate K, then ______.


Let the population of rabbits surviving at a time t be governed by the differential equation `(dp(t))/dt = 1/2p(t) - 200`. If p(0) = 100, then p(t) equals ______ 


The rate of growth of bacteria is proportional to the number present. If initially, there are 1000 bacteria and the number doubles in 1 hour, the number of bacteria after `21/2`  hours will be ______. `(sqrt(2) = 1.414)`


In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, find the number of times the bacteria are increased in 12 hours.

Solution:

Let N be the number of bacteria present at time ‘t’.

Since the rate of increase of N is proportional to N, the differential equation can be written as –

`(dN)/dt αN`

∴ `(dN)/dt` = KN, where K is constant of proportionality

∴ `(dN)/N` = k . dt

∴ `int 1/N dN = K int 1 . dt`

∴ log N = `square` + C   ...(1)

When t = 0, N = N0 where N0 is initial number of bacteria.

∴ log N0 = K × 0 + C

∴ C = log N0

Also when t = 4, N = 2N0

∴ log (2 N0) = K . 4 + `square`   ...[From (1)]

∴ `log((2N_0)/N_0)` = 4K,

∴ log 2 = 4K

∴ K = `square`   ...(2)

Now N = ? when t = 12

From (1) and (2)

log N = `1/4 log 2  . (12) + log N_0`

log N – log N0 = 3 log 2

∴ `log(N_0/N_0)` = `square`

∴ N = 8 N0

∴ Bacteria are increased 8 times in 12 hours.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×