English

Integrating factor of dydx+yx = x3 – 3 is ______ - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrating factor of `("d"y)/("d"x) + y/x` = x3 – 3 is ______

Fill in the Blanks

Solution

x

shaalaa.com
Application of Differential Equations
  Is there an error in this question or solution?
Chapter 1.8: Differential Equation and Applications - Q.2

APPEARS IN

SCERT Maharashtra Mathematics and Statistics (Commerce) [English] 12 Standard HSC
Chapter 1.8 Differential Equation and Applications
Q.2 | Q 7

RELATED QUESTIONS

The rate of disintegration of a radioactive element at any time t is proportional to its mass at that time. Find the time during which the original mass of 1.5 gm will disintegrate into its mass of 0.5 gm.


Assume that a spherical raindrop evaporates at a rate proportional to its surface area. If its radius originally is 3 mm and 1 hour later has been reduced to 2 mm, find an expression for the radius of the raindrop at any time t.


Choose the correct option from the given alternatives:

The decay rate of certain substances is directly proportional to the amount present at that instant. Initially there are 27 grams of substance and 3 hours later it is found that 8 grams left. The amount left after one more hour is


Choose the correct option from the given alternatives:

If the surrounding air is kept at 20° C and a body cools from 80° C to 70° C in 5 minutes, the temperature of the body after 15 minutes will be


The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after t seconds.


The rate of depreciation `(dV)/ dt` of a machine is inversely proportional to the square of t + 1, where V is the value of the machine t years after it was purchased. The initial value of the machine was ₹ 8,00,000 and its value decreased ₹1,00,000 in the first year. Find its value after 6 years.


Choose the correct alternative:

The integrating factor of `("d"y)/("d"x) + y` = e–x is


Choose the correct alternative:

The integrating factor of `("d"^2y)/("d"x^2) - y` = ex, is e–x, then its solution is


Choose the correct alternative:

The solution of `dy/dx` = 1 is ______.


The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is ______


Bacteria increases at the rate proportional to the number of bacteria present. If the original number N doubles in 4 hours, find in how many hours the number of bacteria will be 16N.

Solution: Let x be the number of bacteria in the culture at time t.

Then the rate of increase of x is `("d"x)/"dt"` which is proportional to x.

∴ `("d"x)/"dt" ∝ x`

∴ `("d"x)/"dt"` = kx, where k is a constant

∴ `("d"x)/x` = kdt

On integrating, we get

`int ("d"x)/x = "k" int "dt"`

∴ log x = kt + c    .....(1)

∴ x = aekt where a = e

Initially, i.e.,when t = 0, let x = N

∴ N = aek(0)

∴ a = `square`

∴ a = N, x = Nekt    ......(2)

When t = 4, x = 2N

From equation (2), 2N = Ne4k

∴ e4k = 2

∴  e= `square`

Now we have to find out t, when x = 16N

From equation (2),

16N = Nekt 

∴ 16 = ekt 

∴ `"t"/4 = square` hours

Hence, number of bacteria will be 16N in `square` hours


If the lengths of the transverse axis and the latus rectum of a hyperbola are 6 and `8/3` respectively, then the equation of the hyperbola is ______.


If r is the radius of spherical balloon at time t and the surface area of balloon changes at a constant rate K, then ______.


Let the population of rabbits surviving at a time t be governed by the differential equation `(dp(t))/dt = 1/2p(t) - 200`. If p(0) = 100, then p(t) equals ______ 


The length of the perimeter of a sector of a circle is 24 cm, the maximum area of the sector is ______.


If a curve y = f(x) passes through the point (1, - 1) and satisfies the differential equation, y (1 + xy) dx = x dy, then `f(-1/2)` is equal to ______ 


In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, complete the following activity to find the number of times the bacteria are increased in 12 hours.


In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, find the number of times the bacteria are increased in 12 hours.

Solution:

Let N be the number of bacteria present at time ‘t’.

Since the rate of increase of N is proportional to N, the differential equation can be written as –

`(dN)/dt αN`

∴ `(dN)/dt` = KN, where K is constant of proportionality

∴ `(dN)/N` = k . dt

∴ `int 1/N dN = K int 1 . dt`

∴ log N = `square` + C   ...(1)

When t = 0, N = N0 where N0 is initial number of bacteria.

∴ log N0 = K × 0 + C

∴ C = log N0

Also when t = 4, N = 2N0

∴ log (2 N0) = K . 4 + `square`   ...[From (1)]

∴ `log((2N_0)/N_0)` = 4K,

∴ log 2 = 4K

∴ K = `square`   ...(2)

Now N = ? when t = 12

From (1) and (2)

log N = `1/4 log 2  . (12) + log N_0`

log N – log N0 = 3 log 2

∴ `log(N_0/N_0)` = `square`

∴ N = 8 N0

∴ Bacteria are increased 8 times in 12 hours.


Bacteria increase at the rate proportional to the number of bacteria present. If the original number N doubles in 3 hours, find in how many hours the number of bacteria will be 4N?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×