Advertisements
Advertisements
Question
The solution of `("d"y)/("d"x) + y` = 3 is ______
Solution
y – 3 = ce–x
APPEARS IN
RELATED QUESTIONS
Choose the correct option from the given alternatives:
If the surrounding air is kept at 20° C and a body cools from 80° C to 70° C in 5 minutes, the temperature of the body after 15 minutes will be
The normal lines to a given curve at each point (x, y) on the curve pass through (2, 0). The curve passes through (2, 3). Find the equation of the curve.
A person’s assets start reducing in such a way that the rate of reduction of assets is proportional to the square root of the assets existing at that moment. If the assets at the beginning ax ‘ 10 lakhs and they dwindle down to ‘ 10,000 after 2 years, show that the person will be bankrupt in `2 2/9` years from the start.
The population of a town increases at a rate proportional to the population at that time. If the population increases from 40 thousands to 60 thousands in 40 years, what will be the population in another 20 years?
(Given: `sqrt(3/2)= 1.2247)`
The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and the present population is 1 lac, when will the city have population 4,00,000?
If the population of a town increases at a rate proportional to the population at that time. If the population increases from 40 thousand to 60 thousand in 40 years, what will be the population in another 20 years? `("Given" sqrt(3/2) = 1.2247)`
Choose the correct alternative:
The integrating factor of `("d"y)/("d"x) + y` = e–x is
Choose the correct alternative:
The solution of `("d"y)/("d"x) + x^2/y^2` = 0 is
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is ______
Integrating factor of `("d"y)/("d"x) + y/x` = x3 – 3 is ______
In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, find the number of times the bacteria are increased in 12 hours.
Solution: Let x be the number of bacteria in the culture at time t.
Then the rate of increase of x is `"dx"/"dt"` which is proportional to x.
∴ `"dx"/"dt" ∝ "x"`
∴ `"dx"/"dt"` = kx, where k is a constant
∴ `square`
On integrating, we get
`int "dx"/"x" = "k" int "dt"`
∴ log x = kt + c
Initially, i.e. when t = 0, let x = x0
∴ log x0 = k × 0 + c
∴ c = `square`
∴ log x = kt + log x0
∴ log x - log x0 = kt
∴ `log ("x"/"x"_0)`= kt ......(1)
Since the number doubles in 4 hours, i.e. when t = 4,
x = 2x0
∴ `log ((2"x"_0)/"x"_0)` = 4k
∴ k = `square`
∴ equation (1) becomes, `log ("x"/"x"_0) = "t"/4` log 2
When t = 12, we get
`log ("x"/"x"_0) = 12/4` log 2 = 3 log 2
∴ `log ("x"/"x"_0)` = log 23
∴ `"x"/"x"_0 = 8`
∴ x = `square`
∴ number of bacteria will be 8 times the original number in 12 hours.
Bacteria increases at the rate proportional to the number of bacteria present. If the original number N doubles in 4 hours, find in how many hours the number of bacteria will be 16N.
Solution: Let x be the number of bacteria in the culture at time t.
Then the rate of increase of x is `("d"x)/"dt"` which is proportional to x.
∴ `("d"x)/"dt" ∝ x`
∴ `("d"x)/"dt"` = kx, where k is a constant
∴ `("d"x)/x` = kdt
On integrating, we get
`int ("d"x)/x = "k" int "dt"`
∴ log x = kt + c .....(1)
∴ x = aekt where a = ec
Initially, i.e.,when t = 0, let x = N
∴ N = aek(0)
∴ a = `square`
∴ a = N, x = Nekt ......(2)
When t = 4, x = 2N
From equation (2), 2N = Ne4k
∴ e4k = 2
∴ ek = `square`
Now we have to find out t, when x = 16N
From equation (2),
16N = Nekt
∴ 16 = ekt
∴ `"t"/4 = square` hours
Hence, number of bacteria will be 16N in `square` hours
The population of city doubles in 80 years, in how many years will it be triple when the rate of increase is proportional to the number of inhabitants. `("Given" log3/log2 = 1.5894)`
Solution: Let p be the population at time t.
Then the rate of increase of p is `"dp"/"dt"` which is proportional to p.
∴ `"dp"/"dt" ∝ "p"`
∴ `"dp"/"dt"` = kp, where k is a constant
∴ `"dp"/"p"` = kdt
On integrating, we get
`int "dp"/"p" = "k" int "dt"`
∴ log p = kt + c
Initially, i.e., when t = 0, let p = N
∴ log N = k × 0 + c
∴ c = `square`
When t = 80, p = 2N
∴ log 2N = 80k + log N
∴ log 2N – log N = 80k
∴ `log ((2"N")/"N")` = 80k
∴ log (2) = 80k
∴ k = `square`
∴ p = 3N, then t = ?
∴ log p = `log2/80 "t" + log "N"`
∴ log 3N – log N = `square`
∴ t = `square` = `square` years
Let the population of rabbits surviving at a time t be governed by the differential equation `(dp(t))/dt = 1/2p(t) - 200`. If p(0) = 100, then p(t) equals ______
The length of the perimeter of a sector of a circle is 24 cm, the maximum area of the sector is ______.
If a curve y = f(x) passes through the point (1, - 1) and satisfies the differential equation, y (1 + xy) dx = x dy, then `f(-1/2)` is equal to ______
The rate of disintegration of a radioactive element at time t is proportional to its mass at that time. The original mass of 800 gm will disintegrate into its mass of 400 gm after 5 days. Find the mass remaining after 30 days.
Solution: If x is the amount of material present at time t then `dx/dt = square`, where k is constant of proportionality.
`int dx/x = square + c`
∴ logx = `square`
x = `square` = `square`.ec
∴ x = `square`.a where a = ec
At t = 0, x = 800
∴ a = `square`
At t = 5, x = 400
∴ e–5k = `square`
Now when t = 30
x = `square` × `square` = 800 × (e–5k)6 = 800 × `square` = `square`.
The mass remaining after 30 days will be `square` mg.