English

Choose the correct alternative: The integrating factor of ddd2ydx2-y = ex, is e–x, then its solution is - Mathematics and Statistics

Advertisements
Advertisements

Question

Choose the correct alternative:

The integrating factor of `("d"^2y)/("d"x^2) - y` = ex, is e–x, then its solution is

Options

  • ye–x = x + c

  • ye= x + c

  • ye= 2x + c

  • ye–x = 2x + c

MCQ

Solution

ye–x = x + c

shaalaa.com
Application of Differential Equations
  Is there an error in this question or solution?
Chapter 1.8: Differential Equation and Applications - Q.1

RELATED QUESTIONS

In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, find the number of times the bacteria are increased in 12 hours.


The rate of growth of bacteria is proportional to the number present. If initially, there were 1000 bacteria and the number doubles in 1 hour, find the number of bacteria after `2 1/2` hours.
[Take `sqrt2 = 1.414`]


The rate of growth of the population of a city at any time t is proportional to the size of the population. For a certain city, it is found that the constant of proportionality is 0.04. Find the population of the city after 25 years, if the initial population is 10,000. [Take e = 2.7182]


Choose the correct option from the given alternatives:

If the surrounding air is kept at 20° C and a body cools from 80° C to 70° C in 5 minutes, the temperature of the body after 15 minutes will be


Show that the general solution of differential equation `"dy"/"dx" + ("y"^2 + "y" + 1)/("x"^2 + "x" + 1) = 0` is given by (x + y + 1) = (1 - x - y - 2xy).


The normal lines to a given curve at each point (x, y) on the curve pass through (2, 0). The curve passes through (2, 3). Find the equation of the curve.


The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after t seconds.


The rate of depreciation `(dV)/ dt` of a machine is inversely proportional to the square of t + 1, where V is the value of the machine t years after it was purchased. The initial value of the machine was ₹ 8,00,000 and its value decreased ₹1,00,000 in the first year. Find its value after 6 years.


Choose the correct alternative:

The integrating factor of `("d"y)/("d"x) + y` = e–x is


Choose the correct alternative:

The solution of `dy/dx` = 1 is ______.


Choose the correct alternative:

The solution of `("d"y)/("d"x) + x^2/y^2` = 0 is


The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is ______


The solution of `("d"y)/("d"x) + y` = 3 is  ______


Integrating factor of `("d"y)/("d"x) + y/x` = x3 – 3 is ______


In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, find the number of times the bacteria are increased in 12 hours.

Solution: Let x be the number of bacteria in the culture at time t.

Then the rate of increase of x is `"dx"/"dt"` which is proportional to x.

∴ `"dx"/"dt" ∝  "x"`

∴ `"dx"/"dt"` = kx, where k is a constant

∴ `square`

On integrating, we get

`int "dx"/"x" = "k" int "dt"`

∴ log x = kt + c

Initially, i.e. when t = 0, let x = x0

∴ log x0 = k × 0 + c

∴ c = `square`

∴ log x = kt + log x0 

∴ log x - log x0 = kt

∴ `log ("x"/"x"_0)`= kt    ......(1)

Since the number doubles in 4 hours, i.e. when t = 4,

x = 2x0 

∴ `log ((2"x"_0)/"x"_0)` = 4k

∴ k = `square`

∴ equation (1) becomes, `log ("x"/"x"_0) = "t"/4` log 2

When t = 12, we get

`log ("x"/"x"_0) = 12/4` log 2 = 3 log 2

∴ `log ("x"/"x"_0)` = log 23

∴ `"x"/"x"_0 = 8`

∴ x = `square`

∴ number of bacteria will be 8 times the original number in 12 hours.


Find the population of city at any time t given that rate of increase of population is proportional to the population at that instant and that in a period of 40 years the population increased from 30000 to 40000.

Solution: Let p be the population at time t.

Then the rate of increase of p is `"dp"/"dt"` which is proportional to p.

∴ `"dp"/"dt" prop "p"`

∴ `"dp"/"dt"` = kp, where k is a constant.

∴ `"dp"/"p"` = k dt

On integrating, we get

`int "dp"/"p" = "k" int "dt"`

∴ log p = kt + c

Initially, i.e. when t = 0, let p = 30000

∴ log 30000 = k × 0 + c       

∴ c = `square`

∴ log p = kt + log 30000

∴ log p - log 30000 = kt

∴ `log("p"/30000)` = kt          .....(1)     

when t = 40, p = 40000

∴ `log (40000/30000) = 40"k"`

∴ k = `square`

∴ equation (1) becomes, `log ("p"/30000)` = `square`

∴ `log ("p"/30000) = "t"/40 log (4/3)`

∴ p = `square`


Bacteria increases at the rate proportional to the number of bacteria present. If the original number N doubles in 4 hours, find in how many hours the number of bacteria will be 16N.

Solution: Let x be the number of bacteria in the culture at time t.

Then the rate of increase of x is `("d"x)/"dt"` which is proportional to x.

∴ `("d"x)/"dt" ∝ x`

∴ `("d"x)/"dt"` = kx, where k is a constant

∴ `("d"x)/x` = kdt

On integrating, we get

`int ("d"x)/x = "k" int "dt"`

∴ log x = kt + c    .....(1)

∴ x = aekt where a = e

Initially, i.e.,when t = 0, let x = N

∴ N = aek(0)

∴ a = `square`

∴ a = N, x = Nekt    ......(2)

When t = 4, x = 2N

From equation (2), 2N = Ne4k

∴ e4k = 2

∴  e= `square`

Now we have to find out t, when x = 16N

From equation (2),

16N = Nekt 

∴ 16 = ekt 

∴ `"t"/4 = square` hours

Hence, number of bacteria will be 16N in `square` hours


The population of city doubles in 80 years, in how many years will it be triple when the rate of increase is proportional to the number of inhabitants. `("Given" log3/log2 = 1.5894)`

Solution: Let p be the population at time t.

Then the rate of increase of p is `"dp"/"dt"` which is proportional to p.

∴ `"dp"/"dt"  ∝  "p"`

∴ `"dp"/"dt"` = kp, where k is a constant

∴ `"dp"/"p"` = kdt

On integrating, we get

`int "dp"/"p" = "k" int "dt"`

∴ log p = kt + c

Initially, i.e., when t = 0, let p = N

∴ log N = k × 0 + c

∴ c = `square`

When t = 80, p = 2N

∴ log 2N = 80k + log N

∴ log 2N – log N = 80k

∴ `log ((2"N")/"N")` = 80k

∴ log (2) = 80k

∴ k = `square`

∴ p = 3N, then t = ?

∴ log p = `log2/80  "t" + log "N"`

∴ log 3N – log N = `square`

∴ t = `square` = `square` years


If the population grows at the rate of 8% per year, then the time taken for the population to be doubled, is (Given log 2 = 0.6912).


The equation of tangent at P(- 4, - 4) on the curve x2 = - 4y is ______.


The population of a town increases at a rate proportional to the population at that time. If the population increases from 26,000 to 39,000 in 50 years, then the population in another 25 years will be ______ `(sqrt(3/2) = 1.225)`


Let the population of rabbits surviving at a time t be governed by the differential equation `(dp(t))/dt = 1/2p(t) - 200`. If p(0) = 100, then p(t) equals ______ 


The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 7 hours, then in 35 hours its number would be ______.


If a curve y = f(x) passes through the point (1, - 1) and satisfies the differential equation, y (1 + xy) dx = x dy, then `f(-1/2)` is equal to ______ 


The rate of disintegration of a radioactive element at time t is proportional to its mass at that time. The original mass of 800 gm will disintegrate into its mass of 400 gm after 5 days. Find the mass remaining after 30 days.

Solution: If x is the amount of material present at time t then `dx/dt = square`, where k is constant of proportionality.

`int dx/x = square + c` 

∴ logx = `square`

x = `square` = `square`.ec

∴ x = `square`.a where a = ec

At t = 0, x = 800

∴ a = `square`

At t = 5, x = 400

∴ e–5k = `square`

Now when t = 30 

x = `square` × `square` = 800 × (e–5k)6 = 800 × `square` = `square`.

The mass remaining after 30 days will be `square` mg.


If `(dy)/(dx)` = y + 3 > 0 and y = (0) = 2, then y (in 2) is equal to ______.


The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and the present population is 1,00,000, when will the city have population 4,00,000?

Let ‘p’ be the population at time ‘t’ years.

∴ `("dp")/"dt" prop "p"`

∴ Differential equation can be written as  `("dp")/"dt" = "kp"`

where k is constant of proportionality.

∴ `("dp")/"p" = "k.dt"`

On integrating we get

`square` = kt + c   ...(i)

(i) Where t = 0, p = 1,00,000

∴ from (i)

log 1,00,000 = k(0) + c

∴  c = `square`

∴  log `("p"/(1,00,000)) = "kt"`       ...(ii)

(ii) When t = 25, p = 2,00,000

as population doubles in 25 years

∴ from (ii) log2 = 25k

∴  k = `square`

∴  log`("p"/(1,00,000)) = (1/25log2).t`

(iii) ∴ when p = 4,00,000

`log ((4,00,000)/(1,00,000)) = (1/25log2).t`

∴ `log 4 = (1/25 log2).t`

∴ t = `square ` years


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×