Advertisements
Advertisements
Question
The rate of growth of bacteria is proportional to the number present. If initially, there were 1000 bacteria and the number doubles in 1 hour, find the number of bacteria after `2 1/2` hours.
[Take `sqrt2 = 1.414`]
Solution
Let x be the number of bacteria at time t.
Then the rate of increase is `"dx"/"dt"` which is proportional to x.
∴ `"dx"/"dt" prop "x"`
∴ `"dx"/"dt"` = kx, where k is a constant
∴ `"dx"/"x" = "k dt"`
On integrating, we get
`int "dx"/"x" = "k" int "dt" + "c"`
∴ log x = kt + c
Initially, i.e. when t = 0, x = 1000
∴ log 1000 = k × 0 + c ∴ c = log 1000
∴ log x = ly + log 1000
∴ log x - log 1000 = kt
∴ log`("x"/1000) = "kt"` ...(1)
Now, when t = 1, x = 2 × 1000 = 2000
∴ `log (2000/1000)` = k ∴ k = log 2
∴ (1) becomes, log`("x"/1000) = t log 2
If t = `2 1/2 = 5/2,` then
log`("x"/1000) = 5/2 log 2 = log (2)^(5/2)`
∴ `("x"/1000) = (2)^(5/2) = 4sqrt2 = 4 xx 1.414 = 5.656`
∴ x = 5.656 × 1000 = 5656
∴ number of bacteria after `2 1/2`hours = 5656.
APPEARS IN
RELATED QUESTIONS
In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, find the number of times the bacteria are increased in 12 hours.
If a body cools from 80°C to 50°C at room temperature of 25°C in 30 minutes, find the temperature of the body after 1 hour.
The rate of decay of certain substances is directly proportional to the amount present at that instant. Initially, there is 25 gm of certain substance and two hours later it is found that 9 gm are left. Find the amount left after one more hour.
Find the population of a city at any time t, given that the rate of increase of population is proportional to the population at that instant and that in a period of 40 years, the population increased from 30,000 to 40,000.
A body cools according to Newton’s law from 100° C to 60° C in 20 minutes. The temperature of the surrounding being 20° C. How long will it take to cool down to 30° C?
A right circular cone has height 9 cm and radius of the base 5 cm. It is inverted and water is poured into it. If at any instant the water level rises at the rate of `(pi/"A")`cm/sec, where A is the area of the water surface A at that instant, show that the vessel will be full in 75 seconds.
Assume that a spherical raindrop evaporates at a rate proportional to its surface area. If its radius originally is 3 mm and 1 hour later has been reduced to 2 mm, find an expression for the radius of the raindrop at any time t.
Radium decomposes at the rate proportional to the amount present at any time. If p percent of the amount disappears in one year, what percent of the amount of radium will be left after 2 years?
Choose the correct option from the given alternatives:
The decay rate of certain substances is directly proportional to the amount present at that instant. Initially there are 27 grams of substance and 3 hours later it is found that 8 grams left. The amount left after one more hour is
Show that the general solution of differential equation `"dy"/"dx" + ("y"^2 + "y" + 1)/("x"^2 + "x" + 1) = 0` is given by (x + y + 1) = (1 - x - y - 2xy).
The normal lines to a given curve at each point (x, y) on the curve pass through (2, 0). The curve passes through (2, 3). Find the equation of the curve.
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after t seconds.
A person’s assets start reducing in such a way that the rate of reduction of assets is proportional to the square root of the assets existing at that moment. If the assets at the beginning ax ‘ 10 lakhs and they dwindle down to ‘ 10,000 after 2 years, show that the person will be bankrupt in `2 2/9` years from the start.
If the population of a town increases at a rate proportional to the population at that time. If the population increases from 40 thousand to 60 thousand in 40 years, what will be the population in another 20 years? `("Given" sqrt(3/2) = 1.2247)`
Choose the correct alternative:
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Choose the correct alternative:
The solution of `("d"y)/("d"x) + x^2/y^2` = 0 is
The solution of `("d"y)/("d"x) + y` = 3 is ______
Integrating factor of `("d"y)/("d"x) + y/x` = x3 – 3 is ______
Find the population of city at any time t given that rate of increase of population is proportional to the population at that instant and that in a period of 40 years the population increased from 30000 to 40000.
Solution: Let p be the population at time t.
Then the rate of increase of p is `"dp"/"dt"` which is proportional to p.
∴ `"dp"/"dt" prop "p"`
∴ `"dp"/"dt"` = kp, where k is a constant.
∴ `"dp"/"p"` = k dt
On integrating, we get
`int "dp"/"p" = "k" int "dt"`
∴ log p = kt + c
Initially, i.e. when t = 0, let p = 30000
∴ log 30000 = k × 0 + c
∴ c = `square`
∴ log p = kt + log 30000
∴ log p - log 30000 = kt
∴ `log("p"/30000)` = kt .....(1)
when t = 40, p = 40000
∴ `log (40000/30000) = 40"k"`
∴ k = `square`
∴ equation (1) becomes, `log ("p"/30000)` = `square`
∴ `log ("p"/30000) = "t"/40 log (4/3)`
∴ p = `square`
Bacteria increases at the rate proportional to the number of bacteria present. If the original number N doubles in 4 hours, find in how many hours the number of bacteria will be 16N.
Solution: Let x be the number of bacteria in the culture at time t.
Then the rate of increase of x is `("d"x)/"dt"` which is proportional to x.
∴ `("d"x)/"dt" ∝ x`
∴ `("d"x)/"dt"` = kx, where k is a constant
∴ `("d"x)/x` = kdt
On integrating, we get
`int ("d"x)/x = "k" int "dt"`
∴ log x = kt + c .....(1)
∴ x = aekt where a = ec
Initially, i.e.,when t = 0, let x = N
∴ N = aek(0)
∴ a = `square`
∴ a = N, x = Nekt ......(2)
When t = 4, x = 2N
From equation (2), 2N = Ne4k
∴ e4k = 2
∴ ek = `square`
Now we have to find out t, when x = 16N
From equation (2),
16N = Nekt
∴ 16 = ekt
∴ `"t"/4 = square` hours
Hence, number of bacteria will be 16N in `square` hours
The rate of decay of certain substance is directly proportional to the amount present at that instant. Initially, there are 27 gm of certain substance and 3 h later it is found that 8 gm are left, then the amount left after one more hour is ______.
The equation of tangent at P(- 4, - 4) on the curve x2 = - 4y is ______.
If the lengths of the transverse axis and the latus rectum of a hyperbola are 6 and `8/3` respectively, then the equation of the hyperbola is ______.
If r is the radius of spherical balloon at time t and the surface area of balloon changes at a constant rate K, then ______.
The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 7 hours, then in 35 hours its number would be ______.
The rate of growth of bacteria is proportional to the number present. If initially, there are 1000 bacteria and the number doubles in 1 hour, the number of bacteria after `21/2` hours will be ______. `(sqrt(2) = 1.414)`
If a curve y = f(x) passes through the point (1, - 1) and satisfies the differential equation, y (1 + xy) dx = x dy, then `f(-1/2)` is equal to ______
The rate of disintegration of a radioactive element at time t is proportional to its mass at that time. The original mass of 800 gm will disintegrate into its mass of 400 gm after 5 days. Find the mass remaining after 30 days.
Solution: If x is the amount of material present at time t then `dx/dt = square`, where k is constant of proportionality.
`int dx/x = square + c`
∴ logx = `square`
x = `square` = `square`.ec
∴ x = `square`.a where a = ec
At t = 0, x = 800
∴ a = `square`
At t = 5, x = 400
∴ e–5k = `square`
Now when t = 30
x = `square` × `square` = 800 × (e–5k)6 = 800 × `square` = `square`.
The mass remaining after 30 days will be `square` mg.
In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, find the number of times the bacteria are increased in 12 hours.
Solution:
Let N be the number of bacteria present at time ‘t’.
Since the rate of increase of N is proportional to N, the differential equation can be written as –
`(dN)/dt αN`
∴ `(dN)/dt` = KN, where K is constant of proportionality
∴ `(dN)/N` = k . dt
∴ `int 1/N dN = K int 1 . dt`
∴ log N = `square` + C ...(1)
When t = 0, N = N0 where N0 is initial number of bacteria.
∴ log N0 = K × 0 + C
∴ C = log N0
Also when t = 4, N = 2N0
∴ log (2 N0) = K . 4 + `square` ...[From (1)]
∴ `log((2N_0)/N_0)` = 4K,
∴ log 2 = 4K
∴ K = `square` ...(2)
Now N = ? when t = 12
From (1) and (2)
log N = `1/4 log 2 . (12) + log N_0`
log N – log N0 = 3 log 2
∴ `log(N_0/N_0)` = `square`
∴ N = 8 N0
∴ Bacteria are increased 8 times in 12 hours.
Bacteria increase at the rate proportional to the number of bacteria present. If the original number N doubles in 3 hours, find in how many hours the number of bacteria will be 4N?
The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and the present population is 1,00,000, when will the city have population 4,00,000?
Let ‘p’ be the population at time ‘t’ years.
∴ `("dp")/"dt" prop "p"`
∴ Differential equation can be written as `("dp")/"dt" = "kp"`
where k is constant of proportionality.
∴ `("dp")/"p" = "k.dt"`
On integrating we get
`square` = kt + c ...(i)
(i) Where t = 0, p = 1,00,000
∴ from (i)
log 1,00,000 = k(0) + c
∴ c = `square`
∴ log `("p"/(1,00,000)) = "kt"` ...(ii)
(ii) When t = 25, p = 2,00,000
as population doubles in 25 years
∴ from (ii) log2 = 25k
∴ k = `square`
∴ log`("p"/(1,00,000)) = (1/25log2).t`
(iii) ∴ when p = 4,00,000
`log ((4,00,000)/(1,00,000)) = (1/25log2).t`
∴ `log 4 = (1/25 log2).t`
∴ t = `square ` years