Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
The integrating factor of `("d"^2y)/("d"x^2) - y` = ex, is e–x, then its solution is
पर्याय
ye–x = x + c
yex = x + c
yex = 2x + c
ye–x = 2x + c
उत्तर
ye–x = x + c
संबंधित प्रश्न
If a body cools from 80°C to 50°C at room temperature of 25°C in 30 minutes, find the temperature of the body after 1 hour.
The rate of growth of bacteria is proportional to the number present. If initially, there were 1000 bacteria and the number doubles in 1 hour, find the number of bacteria after `2 1/2` hours.
[Take `sqrt2 = 1.414`]
The rate of disintegration of a radioactive element at any time t is proportional to its mass at that time. Find the time during which the original mass of 1.5 gm will disintegrate into its mass of 0.5 gm.
The rate of decay of certain substances is directly proportional to the amount present at that instant. Initially, there is 25 gm of certain substance and two hours later it is found that 9 gm are left. Find the amount left after one more hour.
Find the population of a city at any time t, given that the rate of increase of population is proportional to the population at that instant and that in a period of 40 years, the population increased from 30,000 to 40,000.
A body cools according to Newton’s law from 100° C to 60° C in 20 minutes. The temperature of the surrounding being 20° C. How long will it take to cool down to 30° C?
The rate of growth of the population of a city at any time t is proportional to the size of the population. For a certain city, it is found that the constant of proportionality is 0.04. Find the population of the city after 25 years, if the initial population is 10,000. [Take e = 2.7182]
Choose the correct option from the given alternatives:
If the surrounding air is kept at 20° C and a body cools from 80° C to 70° C in 5 minutes, the temperature of the body after 15 minutes will be
Show that the general solution of differential equation `"dy"/"dx" + ("y"^2 + "y" + 1)/("x"^2 + "x" + 1) = 0` is given by (x + y + 1) = (1 - x - y - 2xy).
The normal lines to a given curve at each point (x, y) on the curve pass through (2, 0). The curve passes through (2, 3). Find the equation of the curve.
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after t seconds.
The rate of growth of bacteria is proportional to the number present. If initially, there were 1000 bacteria and the number doubles in 1 hour, find the number of bacteria after `5/2` hours `("Given" sqrt(2) = 1.414)`
Choose the correct alternative:
The integrating factor of `("d"y)/("d"x) + y` = e–x is
Choose the correct alternative:
The solution of `dy/dx` = 1 is ______.
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is ______
Find the population of city at any time t given that rate of increase of population is proportional to the population at that instant and that in a period of 40 years the population increased from 30000 to 40000.
Solution: Let p be the population at time t.
Then the rate of increase of p is `"dp"/"dt"` which is proportional to p.
∴ `"dp"/"dt" prop "p"`
∴ `"dp"/"dt"` = kp, where k is a constant.
∴ `"dp"/"p"` = k dt
On integrating, we get
`int "dp"/"p" = "k" int "dt"`
∴ log p = kt + c
Initially, i.e. when t = 0, let p = 30000
∴ log 30000 = k × 0 + c
∴ c = `square`
∴ log p = kt + log 30000
∴ log p - log 30000 = kt
∴ `log("p"/30000)` = kt .....(1)
when t = 40, p = 40000
∴ `log (40000/30000) = 40"k"`
∴ k = `square`
∴ equation (1) becomes, `log ("p"/30000)` = `square`
∴ `log ("p"/30000) = "t"/40 log (4/3)`
∴ p = `square`
If the population grows at the rate of 8% per year, then the time taken for the population to be doubled, is (Given log 2 = 0.6912).
The equation of tangent at P(- 4, - 4) on the curve x2 = - 4y is ______.
The bacteria increases at the rate proportional to the number of bacteria present. If the original number 'N' doubles in 4 h, then the number of bacteria in 12 h will be ____________.
If a curve y = f(x) passes through the point (1, - 1) and satisfies the differential equation, y (1 + xy) dx = x dy, then `f(-1/2)` is equal to ______
In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, complete the following activity to find the number of times the bacteria are increased in 12 hours.
The rate of disintegration of a radioactive element at time t is proportional to its mass at that time. The original mass of 800 gm will disintegrate into its mass of 400 gm after 5 days. Find the mass remaining after 30 days.
Solution: If x is the amount of material present at time t then `dx/dt = square`, where k is constant of proportionality.
`int dx/x = square + c`
∴ logx = `square`
x = `square` = `square`.ec
∴ x = `square`.a where a = ec
At t = 0, x = 800
∴ a = `square`
At t = 5, x = 400
∴ e–5k = `square`
Now when t = 30
x = `square` × `square` = 800 × (e–5k)6 = 800 × `square` = `square`.
The mass remaining after 30 days will be `square` mg.
In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, find the number of times the bacteria are increased in 12 hours.
Solution:
Let N be the number of bacteria present at time ‘t’.
Since the rate of increase of N is proportional to N, the differential equation can be written as –
`(dN)/dt αN`
∴ `(dN)/dt` = KN, where K is constant of proportionality
∴ `(dN)/N` = k . dt
∴ `int 1/N dN = K int 1 . dt`
∴ log N = `square` + C ...(1)
When t = 0, N = N0 where N0 is initial number of bacteria.
∴ log N0 = K × 0 + C
∴ C = log N0
Also when t = 4, N = 2N0
∴ log (2 N0) = K . 4 + `square` ...[From (1)]
∴ `log((2N_0)/N_0)` = 4K,
∴ log 2 = 4K
∴ K = `square` ...(2)
Now N = ? when t = 12
From (1) and (2)
log N = `1/4 log 2 . (12) + log N_0`
log N – log N0 = 3 log 2
∴ `log(N_0/N_0)` = `square`
∴ N = 8 N0
∴ Bacteria are increased 8 times in 12 hours.
Bacteria increase at the rate proportional to the number of bacteria present. If the original number N doubles in 3 hours, find in how many hours the number of bacteria will be 4N?