Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
The solution of `dy/dx` = 1 is ______.
पर्याय
x + y = c
xy = c
x2 + y2 = c
y – x = c
उत्तर
The solution of `dy/dx` = 1 is y – x = c.
संबंधित प्रश्न
The rate of growth of bacteria is proportional to the number present. If initially, there were 1000 bacteria and the number doubles in 1 hour, find the number of bacteria after `2 1/2` hours.
[Take `sqrt2 = 1.414`]
Find the population of a city at any time t, given that the rate of increase of population is proportional to the population at that instant and that in a period of 40 years, the population increased from 30,000 to 40,000.
A body cools according to Newton’s law from 100° C to 60° C in 20 minutes. The temperature of the surrounding being 20° C. How long will it take to cool down to 30° C?
A right circular cone has height 9 cm and radius of the base 5 cm. It is inverted and water is poured into it. If at any instant the water level rises at the rate of `(pi/"A")`cm/sec, where A is the area of the water surface A at that instant, show that the vessel will be full in 75 seconds.
Choose the correct option from the given alternatives:
The decay rate of certain substances is directly proportional to the amount present at that instant. Initially there are 27 grams of substance and 3 hours later it is found that 8 grams left. The amount left after one more hour is
Choose the correct option from the given alternatives:
If the surrounding air is kept at 20° C and a body cools from 80° C to 70° C in 5 minutes, the temperature of the body after 15 minutes will be
Choose the correct option from the given alternatives:
If the surrounding air is kept at 20° C and a body cools from 80° C to 70° C in 5 minutes, the temperature of the body after 15 minutes will be
Show that the general solution of differential equation `"dy"/"dx" + ("y"^2 + "y" + 1)/("x"^2 + "x" + 1) = 0` is given by (x + y + 1) = (1 - x - y - 2xy).
The normal lines to a given curve at each point (x, y) on the curve pass through (2, 0). The curve passes through (2, 3). Find the equation of the curve.
The rate of depreciation `(dV)/ dt` of a machine is inversely proportional to the square of t + 1, where V is the value of the machine t years after it was purchased. The initial value of the machine was ₹ 8,00,000 and its value decreased ₹1,00,000 in the first year. Find its value after 6 years.
Choose the correct alternative:
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Choose the correct alternative:
The integrating factor of `("d"y)/("d"x) + y` = e–x is
Choose the correct alternative:
The integrating factor of `("d"^2y)/("d"x^2) - y` = ex, is e–x, then its solution is
Choose the correct alternative:
The solution of `("d"y)/("d"x) + x^2/y^2` = 0 is
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is ______
The solution of `("d"y)/("d"x) + y` = 3 is ______
Bacteria increases at the rate proportional to the number of bacteria present. If the original number N doubles in 4 hours, find in how many hours the number of bacteria will be 16N.
Solution: Let x be the number of bacteria in the culture at time t.
Then the rate of increase of x is `("d"x)/"dt"` which is proportional to x.
∴ `("d"x)/"dt" ∝ x`
∴ `("d"x)/"dt"` = kx, where k is a constant
∴ `("d"x)/x` = kdt
On integrating, we get
`int ("d"x)/x = "k" int "dt"`
∴ log x = kt + c .....(1)
∴ x = aekt where a = ec
Initially, i.e.,when t = 0, let x = N
∴ N = aek(0)
∴ a = `square`
∴ a = N, x = Nekt ......(2)
When t = 4, x = 2N
From equation (2), 2N = Ne4k
∴ e4k = 2
∴ ek = `square`
Now we have to find out t, when x = 16N
From equation (2),
16N = Nekt
∴ 16 = ekt
∴ `"t"/4 = square` hours
Hence, number of bacteria will be 16N in `square` hours
If the population grows at the rate of 8% per year, then the time taken for the population to be doubled, is (Given log 2 = 0.6912).
The rate of decay of certain substance is directly proportional to the amount present at that instant. Initially, there are 27 gm of certain substance and 3 h later it is found that 8 gm are left, then the amount left after one more hour is ______.
The bacteria increases at the rate proportional to the number of bacteria present. If the original number 'N' doubles in 4 h, then the number of bacteria in 12 h will be ____________.
If the lengths of the transverse axis and the latus rectum of a hyperbola are 6 and `8/3` respectively, then the equation of the hyperbola is ______.
Let the population of rabbits surviving at a time t be governed by the differential equation `(dp(t))/dt = 1/2p(t) - 200`. If p(0) = 100, then p(t) equals ______
The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 7 hours, then in 35 hours its number would be ______.
The length of the perimeter of a sector of a circle is 24 cm, the maximum area of the sector is ______.
The rate of growth of bacteria is proportional to the number present. If initially, there are 1000 bacteria and the number doubles in 1 hour, the number of bacteria after `21/2` hours will be ______. `(sqrt(2) = 1.414)`
If a curve y = f(x) passes through the point (1, - 1) and satisfies the differential equation, y (1 + xy) dx = x dy, then `f(-1/2)` is equal to ______
The rate of disintegration of a radioactive element at time t is proportional to its mass at that time. The original mass of 800 gm will disintegrate into its mass of 400 gm after 5 days. Find the mass remaining after 30 days.
Solution: If x is the amount of material present at time t then `dx/dt = square`, where k is constant of proportionality.
`int dx/x = square + c`
∴ logx = `square`
x = `square` = `square`.ec
∴ x = `square`.a where a = ec
At t = 0, x = 800
∴ a = `square`
At t = 5, x = 400
∴ e–5k = `square`
Now when t = 30
x = `square` × `square` = 800 × (e–5k)6 = 800 × `square` = `square`.
The mass remaining after 30 days will be `square` mg.
If `(dy)/(dx)` = y + 3 > 0 and y = (0) = 2, then y (in 2) is equal to ______.