Advertisements
Advertisements
प्रश्न
The rate of disintegration of a radioactive element at time t is proportional to its mass at that time. The original mass of 800 gm will disintegrate into its mass of 400 gm after 5 days. Find the mass remaining after 30 days.
Solution: If x is the amount of material present at time t then `dx/dt = square`, where k is constant of proportionality.
`int dx/x = square + c`
∴ logx = `square`
x = `square` = `square`.ec
∴ x = `square`.a where a = ec
At t = 0, x = 800
∴ a = `square`
At t = 5, x = 400
∴ e–5k = `square`
Now when t = 30
x = `square` × `square` = 800 × (e–5k)6 = 800 × `square` = `square`.
The mass remaining after 30 days will be `square` mg.
उत्तर
Let x be the amount present at time t then
∴ `dx/dt` = –kx
where k is constant of proportion
∴ `int dx/x = bb(-int kdt) + c`
∴ logx = –kt + c
∴ x = e–kt+c = e–kt × ec
∴ x = a.e–kt where a = ec
At t = 0, x = 800
∴ 800 = a · e0
∴ a = 800
∴ x = 800 · e–kt
At t = 5, x = 400
∴ 400 = 800 · e–5k
∴ e–5k = `400/800 = 1/2`
∴ e–5k = `bb(1/2)`
Now when t = 30,
x = 800 · e–30k
= 800 · (e–5k)6
= `800 xx (1/22)^6`
= 12.5
∴ The mass remaining after 30 days will be 12.5 mg.
APPEARS IN
संबंधित प्रश्न
In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, find the number of times the bacteria are increased in 12 hours.
If a body cools from 80°C to 50°C at room temperature of 25°C in 30 minutes, find the temperature of the body after 1 hour.
The rate of decay of certain substances is directly proportional to the amount present at that instant. Initially, there is 25 gm of certain substance and two hours later it is found that 9 gm are left. Find the amount left after one more hour.
A body cools according to Newton’s law from 100° C to 60° C in 20 minutes. The temperature of the surrounding being 20° C. How long will it take to cool down to 30° C?
A right circular cone has height 9 cm and radius of the base 5 cm. It is inverted and water is poured into it. If at any instant the water level rises at the rate of `(pi/"A")`cm/sec, where A is the area of the water surface A at that instant, show that the vessel will be full in 75 seconds.
Assume that a spherical raindrop evaporates at a rate proportional to its surface area. If its radius originally is 3 mm and 1 hour later has been reduced to 2 mm, find an expression for the radius of the raindrop at any time t.
The rate of growth of the population of a city at any time t is proportional to the size of the population. For a certain city, it is found that the constant of proportionality is 0.04. Find the population of the city after 25 years, if the initial population is 10,000. [Take e = 2.7182]
Choose the correct option from the given alternatives:
If the surrounding air is kept at 20° C and a body cools from 80° C to 70° C in 5 minutes, the temperature of the body after 15 minutes will be
Choose the correct option from the given alternatives:
If the surrounding air is kept at 20° C and a body cools from 80° C to 70° C in 5 minutes, the temperature of the body after 15 minutes will be
Show that the general solution of differential equation `"dy"/"dx" + ("y"^2 + "y" + 1)/("x"^2 + "x" + 1) = 0` is given by (x + y + 1) = (1 - x - y - 2xy).
The normal lines to a given curve at each point (x, y) on the curve pass through (2, 0). The curve passes through (2, 3). Find the equation of the curve.
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after t seconds.
The rate of depreciation `(dV)/ dt` of a machine is inversely proportional to the square of t + 1, where V is the value of the machine t years after it was purchased. The initial value of the machine was ₹ 8,00,000 and its value decreased ₹1,00,000 in the first year. Find its value after 6 years.
If the population of a town increases at a rate proportional to the population at that time. If the population increases from 40 thousand to 60 thousand in 40 years, what will be the population in another 20 years? `("Given" sqrt(3/2) = 1.2247)`
Choose the correct alternative:
Bacterial increases at the rate proportional to the number present. If original number M doubles in 3 hours, then number of bacteria will be 4M in
Choose the correct alternative:
The solution of `dy/dx` = 1 is ______.
The solution of `("d"y)/("d"x) + y` = 3 is ______
Integrating factor of `("d"y)/("d"x) + y/x` = x3 – 3 is ______
In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, find the number of times the bacteria are increased in 12 hours.
Solution: Let x be the number of bacteria in the culture at time t.
Then the rate of increase of x is `"dx"/"dt"` which is proportional to x.
∴ `"dx"/"dt" ∝ "x"`
∴ `"dx"/"dt"` = kx, where k is a constant
∴ `square`
On integrating, we get
`int "dx"/"x" = "k" int "dt"`
∴ log x = kt + c
Initially, i.e. when t = 0, let x = x0
∴ log x0 = k × 0 + c
∴ c = `square`
∴ log x = kt + log x0
∴ log x - log x0 = kt
∴ `log ("x"/"x"_0)`= kt ......(1)
Since the number doubles in 4 hours, i.e. when t = 4,
x = 2x0
∴ `log ((2"x"_0)/"x"_0)` = 4k
∴ k = `square`
∴ equation (1) becomes, `log ("x"/"x"_0) = "t"/4` log 2
When t = 12, we get
`log ("x"/"x"_0) = 12/4` log 2 = 3 log 2
∴ `log ("x"/"x"_0)` = log 23
∴ `"x"/"x"_0 = 8`
∴ x = `square`
∴ number of bacteria will be 8 times the original number in 12 hours.
The population of city doubles in 80 years, in how many years will it be triple when the rate of increase is proportional to the number of inhabitants. `("Given" log3/log2 = 1.5894)`
Solution: Let p be the population at time t.
Then the rate of increase of p is `"dp"/"dt"` which is proportional to p.
∴ `"dp"/"dt" ∝ "p"`
∴ `"dp"/"dt"` = kp, where k is a constant
∴ `"dp"/"p"` = kdt
On integrating, we get
`int "dp"/"p" = "k" int "dt"`
∴ log p = kt + c
Initially, i.e., when t = 0, let p = N
∴ log N = k × 0 + c
∴ c = `square`
When t = 80, p = 2N
∴ log 2N = 80k + log N
∴ log 2N – log N = 80k
∴ `log ((2"N")/"N")` = 80k
∴ log (2) = 80k
∴ k = `square`
∴ p = 3N, then t = ?
∴ log p = `log2/80 "t" + log "N"`
∴ log 3N – log N = `square`
∴ t = `square` = `square` years
The bacteria increases at the rate proportional to the number of bacteria present. If the original number 'N' doubles in 4 h, then the number of bacteria in 12 h will be ____________.
The population of a town increases at a rate proportional to the population at that time. If the population increases from 26,000 to 39,000 in 50 years, then the population in another 25 years will be ______ `(sqrt(3/2) = 1.225)`
The length of the perimeter of a sector of a circle is 24 cm, the maximum area of the sector is ______.
If `(dy)/(dx)` = y + 3 > 0 and y = (0) = 2, then y (in 2) is equal to ______.
In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, find the number of times the bacteria are increased in 12 hours.
Solution:
Let N be the number of bacteria present at time ‘t’.
Since the rate of increase of N is proportional to N, the differential equation can be written as –
`(dN)/dt αN`
∴ `(dN)/dt` = KN, where K is constant of proportionality
∴ `(dN)/N` = k . dt
∴ `int 1/N dN = K int 1 . dt`
∴ log N = `square` + C ...(1)
When t = 0, N = N0 where N0 is initial number of bacteria.
∴ log N0 = K × 0 + C
∴ C = log N0
Also when t = 4, N = 2N0
∴ log (2 N0) = K . 4 + `square` ...[From (1)]
∴ `log((2N_0)/N_0)` = 4K,
∴ log 2 = 4K
∴ K = `square` ...(2)
Now N = ? when t = 12
From (1) and (2)
log N = `1/4 log 2 . (12) + log N_0`
log N – log N0 = 3 log 2
∴ `log(N_0/N_0)` = `square`
∴ N = 8 N0
∴ Bacteria are increased 8 times in 12 hours.
The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and the present population is 1,00,000, when will the city have population 4,00,000?
Let ‘p’ be the population at time ‘t’ years.
∴ `("dp")/"dt" prop "p"`
∴ Differential equation can be written as `("dp")/"dt" = "kp"`
where k is constant of proportionality.
∴ `("dp")/"p" = "k.dt"`
On integrating we get
`square` = kt + c ...(i)
(i) Where t = 0, p = 1,00,000
∴ from (i)
log 1,00,000 = k(0) + c
∴ c = `square`
∴ log `("p"/(1,00,000)) = "kt"` ...(ii)
(ii) When t = 25, p = 2,00,000
as population doubles in 25 years
∴ from (ii) log2 = 25k
∴ k = `square`
∴ log`("p"/(1,00,000)) = (1/25log2).t`
(iii) ∴ when p = 4,00,000
`log ((4,00,000)/(1,00,000)) = (1/25log2).t`
∴ `log 4 = (1/25 log2).t`
∴ t = `square ` years