मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and the present population is 1,00,000, when will the city have population 400000 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and the present population is 1,00,000, when will the city have population 4,00,000?

Let ‘p’ be the population at time ‘t’ years.

∴ `("dp")/"dt" prop "p"`

∴ Differential equation can be written as  `("dp")/"dt" = "kp"`

where k is constant of proportionality.

∴ `("dp")/"p" = "k.dt"`

On integrating we get

`square` = kt + c   ...(i)

(i) Where t = 0, p = 1,00,000

∴ from (i)

log 1,00,000 = k(0) + c

∴  c = `square`

∴  log `("p"/(1,00,000)) = "kt"`       ...(ii)

(ii) When t = 25, p = 2,00,000

as population doubles in 25 years

∴ from (ii) log2 = 25k

∴  k = `square`

∴  log`("p"/(1,00,000)) = (1/25log2).t`

(iii) ∴ when p = 4,00,000

`log ((4,00,000)/(1,00,000)) = (1/25log2).t`

∴ `log 4 = (1/25 log2).t`

∴ t = `square ` years

रिकाम्या जागा भरा
बेरीज

उत्तर

Let ‘p’ be the population at time ‘t’ years.

∴ `("dp")/"dt" prop "p"`

∴ Differential equation can be written as  `("dp")/"dt" = "kp"`

where k is constant of proportionality.

∴ `("dp")/"p" = "k.dt"`

On integrating, we get

log p = kt + c   ...(i)

(i) Where t = 0, p = 1,00,000

∴ from (i)

log 1,00,000 = k(0) + c

∴  c = log 1,00,000

∴  log `("p"/(1,00,000)) = "kt"`       ...(ii)

(ii) When t = 25, p = 2,00,000

as population doubles in 25 years

∴ from (ii) log2 = 25k

∴  k = `bb(1/25 log2)`

∴  log`("p"/(1,00,000)) = (1/25log2).t`

(iii) ∴ when p = 4,00,000

`log ((4,00,000)/(1,00,000)) = (1/25log2).t`

∴ `log 4 = (1/25 log2).t`

∴ t = 50 years

shaalaa.com
Application of Differential Equations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2023-2024 (March) Official

संबंधित प्रश्‍न

In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, find the number of times the bacteria are increased in 12 hours.


The rate of disintegration of a radioactive element at any time t is proportional to its mass at that time. Find the time during which the original mass of 1.5 gm will disintegrate into its mass of 0.5 gm.


The rate of decay of certain substances is directly proportional to the amount present at that instant. Initially, there is 25 gm of certain substance and two hours later it is found that 9 gm are left. Find the amount left after one more hour.


A body cools according to Newton’s law from 100° C to 60° C in 20 minutes. The temperature of the surrounding being 20° C. How long will it take to cool down to 30° C?


A right circular cone has height 9 cm and radius of the base 5 cm. It is inverted and water is poured into it. If at any instant the water level rises at the rate of `(pi/"A")`cm/sec, where A is the area of the water surface A at that instant, show that the vessel will be full in 75 seconds.


Assume that a spherical raindrop evaporates at a rate proportional to its surface area. If its radius originally is 3 mm and 1 hour later has been reduced to 2 mm, find an expression for the radius of the raindrop at any time t.


The rate of growth of the population of a city at any time t is proportional to the size of the population. For a certain city, it is found that the constant of proportionality is 0.04. Find the population of the city after 25 years, if the initial population is 10,000. [Take e = 2.7182]


Radium decomposes at the rate proportional to the amount present at any time. If p percent of the amount disappears in one year, what percent of the amount of radium will be left after 2 years?


Show that the general solution of differential equation `"dy"/"dx" + ("y"^2 + "y" + 1)/("x"^2 + "x" + 1) = 0` is given by (x + y + 1) = (1 - x - y - 2xy).


The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after t seconds.


The rate of depreciation `(dV)/ dt` of a machine is inversely proportional to the square of t + 1, where V is the value of the machine t years after it was purchased. The initial value of the machine was ₹ 8,00,000 and its value decreased ₹1,00,000 in the first year. Find its value after 6 years.


The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and the present population is 1 lac, when will the city have population 4,00,000?


The rate of growth of bacteria is proportional to the number present. If initially, there were 1000 bacteria and the number doubles in 1 hour, find the number of bacteria after `5/2` hours  `("Given"  sqrt(2) = 1.414)`


Choose the correct alternative:

The solution of `dy/dx` = 1 is ______.


The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is ______


The solution of `("d"y)/("d"x) + y` = 3 is  ______


Bacteria increases at the rate proportional to the number of bacteria present. If the original number N doubles in 4 hours, find in how many hours the number of bacteria will be 16N.

Solution: Let x be the number of bacteria in the culture at time t.

Then the rate of increase of x is `("d"x)/"dt"` which is proportional to x.

∴ `("d"x)/"dt" ∝ x`

∴ `("d"x)/"dt"` = kx, where k is a constant

∴ `("d"x)/x` = kdt

On integrating, we get

`int ("d"x)/x = "k" int "dt"`

∴ log x = kt + c    .....(1)

∴ x = aekt where a = e

Initially, i.e.,when t = 0, let x = N

∴ N = aek(0)

∴ a = `square`

∴ a = N, x = Nekt    ......(2)

When t = 4, x = 2N

From equation (2), 2N = Ne4k

∴ e4k = 2

∴  e= `square`

Now we have to find out t, when x = 16N

From equation (2),

16N = Nekt 

∴ 16 = ekt 

∴ `"t"/4 = square` hours

Hence, number of bacteria will be 16N in `square` hours


The equation of tangent at P(- 4, - 4) on the curve x2 = - 4y is ______.


The population of a town increases at a rate proportional to the population at that time. If the population increases from 26,000 to 39,000 in 50 years, then the population in another 25 years will be ______ `(sqrt(3/2) = 1.225)`


The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 7 hours, then in 35 hours its number would be ______.


In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, complete the following activity to find the number of times the bacteria are increased in 12 hours.


If `(dy)/(dx)` = y + 3 > 0 and y = (0) = 2, then y (in 2) is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×