मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

The rate of depreciation dVdt of a machine is inversely proportional to the square of t + 1, where V is the value of the machine t years after it was purchased. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

The rate of depreciation `(dV)/ dt` of a machine is inversely proportional to the square of t + 1, where V is the value of the machine t years after it was purchased. The initial value of the machine was ₹ 8,00,000 and its value decreased ₹1,00,000 in the first year. Find its value after 6 years.

बेरीज

उत्तर

According to the given condition,

`(dV)/dt ∝ 1/(t+1)^2`

∴ `(dV)/dt = (-k)/(t+1)^2` …[Negative sign indicates disintegration]

∴ `dV =  (-kdt)/(t+1)^2`

Integrating on both sides, we get

`int dV = - k int dt/(t+1)^2`

∴ `V = k/(t+1) + c`

when t = 0, V = 8,00,000

∴ `8,00,000 = k/((0+1)) +c`

∴ 8,00,000 = k + c …(i)

when t = 1, V = 7,00,000

∴ `7,00,000 = k /((1 +1)) + c`

∴ `7,00,000 = k/ 2 + c` …(ii)

From (i) – (ii), we get

`1,00,000 = k /2`

∴ k = 2,00,000  …(iii)

Substituting (iii) in (i), we get

c = 6,00,000  …(iv)

when t = 6, we get

`V = k/((6+ 1)) + c`

=`(2,00,000 )/7 + 6,00,000`

= 6,28,571.4286

≈6,28,571

∴ Value of the machine after 6 years is ₹ 6,28,571.

shaalaa.com
Application of Differential Equations
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Differential Equation and Applications - Exercise 8.6 [पृष्ठ १७०]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 8 Differential Equation and Applications
Exercise 8.6 | Q 5 | पृष्ठ १७०

संबंधित प्रश्‍न

Find the population of a city at any time t, given that the rate of increase of population is proportional to the population at that instant and that in a period of 40 years, the population increased from 30,000 to 40,000.


A right circular cone has height 9 cm and radius of the base 5 cm. It is inverted and water is poured into it. If at any instant the water level rises at the rate of `(pi/"A")`cm/sec, where A is the area of the water surface A at that instant, show that the vessel will be full in 75 seconds.


Show that the general solution of differential equation `"dy"/"dx" + ("y"^2 + "y" + 1)/("x"^2 + "x" + 1) = 0` is given by (x + y + 1) = (1 - x - y - 2xy).


The normal lines to a given curve at each point (x, y) on the curve pass through (2, 0). The curve passes through (2, 3). Find the equation of the curve.


If the population of a town increases at a rate proportional to the population at that time. If the population increases from 40 thousand to 60 thousand in 40 years, what will be the population in another 20 years? `("Given" sqrt(3/2) = 1.2247)`


Choose the correct alternative:

The solution of `dy/dx` = 1 is ______.


The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is ______


The solution of `("d"y)/("d"x) + y` = 3 is  ______


Find the population of city at any time t given that rate of increase of population is proportional to the population at that instant and that in a period of 40 years the population increased from 30000 to 40000.

Solution: Let p be the population at time t.

Then the rate of increase of p is `"dp"/"dt"` which is proportional to p.

∴ `"dp"/"dt" prop "p"`

∴ `"dp"/"dt"` = kp, where k is a constant.

∴ `"dp"/"p"` = k dt

On integrating, we get

`int "dp"/"p" = "k" int "dt"`

∴ log p = kt + c

Initially, i.e. when t = 0, let p = 30000

∴ log 30000 = k × 0 + c       

∴ c = `square`

∴ log p = kt + log 30000

∴ log p - log 30000 = kt

∴ `log("p"/30000)` = kt          .....(1)     

when t = 40, p = 40000

∴ `log (40000/30000) = 40"k"`

∴ k = `square`

∴ equation (1) becomes, `log ("p"/30000)` = `square`

∴ `log ("p"/30000) = "t"/40 log (4/3)`

∴ p = `square`


If the population grows at the rate of 8% per year, then the time taken for the population to be doubled, is (Given log 2 = 0.6912).


If the lengths of the transverse axis and the latus rectum of a hyperbola are 6 and `8/3` respectively, then the equation of the hyperbola is ______.


If r is the radius of spherical balloon at time t and the surface area of balloon changes at a constant rate K, then ______.


The population of a town increases at a rate proportional to the population at that time. If the population increases from 26,000 to 39,000 in 50 years, then the population in another 25 years will be ______ `(sqrt(3/2) = 1.225)`


The rate of growth of bacteria is proportional to the number present. If initially, there are 1000 bacteria and the number doubles in 1 hour, the number of bacteria after `21/2`  hours will be ______. `(sqrt(2) = 1.414)`


If a curve y = f(x) passes through the point (1, - 1) and satisfies the differential equation, y (1 + xy) dx = x dy, then `f(-1/2)` is equal to ______ 


In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, complete the following activity to find the number of times the bacteria are increased in 12 hours.


If `(dy)/(dx)` = y + 3 > 0 and y = (0) = 2, then y (in 2) is equal to ______.


Bacteria increase at the rate proportional to the number of bacteria present. If the original number N doubles in 3 hours, find in how many hours the number of bacteria will be 4N?


The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and the present population is 1,00,000, when will the city have population 4,00,000?

Let ‘p’ be the population at time ‘t’ years.

∴ `("dp")/"dt" prop "p"`

∴ Differential equation can be written as  `("dp")/"dt" = "kp"`

where k is constant of proportionality.

∴ `("dp")/"p" = "k.dt"`

On integrating we get

`square` = kt + c   ...(i)

(i) Where t = 0, p = 1,00,000

∴ from (i)

log 1,00,000 = k(0) + c

∴  c = `square`

∴  log `("p"/(1,00,000)) = "kt"`       ...(ii)

(ii) When t = 25, p = 2,00,000

as population doubles in 25 years

∴ from (ii) log2 = 25k

∴  k = `square`

∴  log`("p"/(1,00,000)) = (1/25log2).t`

(iii) ∴ when p = 4,00,000

`log ((4,00,000)/(1,00,000)) = (1/25log2).t`

∴ `log 4 = (1/25 log2).t`

∴ t = `square ` years


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×