Advertisements
Advertisements
Question
If the population of a country doubles in 60 years, in how many years will it be triple (treble) under the assumption that the rate of increase is proportional to the number of inhabitants?
(Given log 2 = 0.6912, log 3 = 1.0986)
Solution
Let P be the population at time t years. Then `"dP"/"dt"`, the rate of increase of population is proportional to P.
∴ `"dP"/"dt" ∝ "P"`
∴ `"dP"/"dt"` = kP, where k is a constant
∴ `"dP"/"P"` = k dt
On integrating, we get
`int "dP"/"P" = "k" int "dt" + "c"`
∴ log P = kt + c
Initially, i.e. when t = 0, let P = P0
∴ log P0 = k × 0 + c
∴ c = log P0
∴ log P = kt + log P0
∴ log P - log P0 = kt
∴ `log ("P"/"P"_0)`= kt ...(1)
Since the population doubles in 60 years, i.e. when t = 60, P = 2P0
∴ `log ((2"P"_0)/"P"_0)` = 60k
∴ k = `1/60` log 2
∴ (1) becomes, `log ("P"/"P"_0) = "t"/60` log 2
When population becomes triple, i.e. when P = 3P0 , we get
`log ((3"P"_0)/"P"_0) = "t"/60` log 2
∴ `log 3 = ("t"/60)` log 2
∴ t = `60 ((log 3)/(log 2)) = 60 (1.0986/0.6912)`
= 60 × 1.5894 = 95.364 ≈ 95.4 years
∴ the population becomes triple in 95.4 years (approximately).
APPEARS IN
RELATED QUESTIONS
If a body cools from 80°C to 50°C at room temperature of 25°C in 30 minutes, find the temperature of the body after 1 hour.
If a body cools from 80°C to 50°C at room temperature of 25°C in 30 minutes, find the temperature of the body after 1 hour.
The rate of growth of bacteria is proportional to the number present. If initially, there were 1000 bacteria and the number doubles in 1 hour, find the number of bacteria after `2 1/2` hours.
[Take `sqrt2 = 1.414`]
The rate of disintegration of a radioactive element at any time t is proportional to its mass at that time. Find the time during which the original mass of 1.5 gm will disintegrate into its mass of 0.5 gm.
Find the population of a city at any time t, given that the rate of increase of population is proportional to the population at that instant and that in a period of 40 years, the population increased from 30,000 to 40,000.
A body cools according to Newton’s law from 100° C to 60° C in 20 minutes. The temperature of the surrounding being 20° C. How long will it take to cool down to 30° C?
A right circular cone has height 9 cm and radius of the base 5 cm. It is inverted and water is poured into it. If at any instant the water level rises at the rate of `(pi/"A")`cm/sec, where A is the area of the water surface A at that instant, show that the vessel will be full in 75 seconds.
Radium decomposes at the rate proportional to the amount present at any time. If p percent of the amount disappears in one year, what percent of the amount of radium will be left after 2 years?
Choose the correct option from the given alternatives:
If the surrounding air is kept at 20° C and a body cools from 80° C to 70° C in 5 minutes, the temperature of the body after 15 minutes will be
Show that the general solution of differential equation `"dy"/"dx" + ("y"^2 + "y" + 1)/("x"^2 + "x" + 1) = 0` is given by (x + y + 1) = (1 - x - y - 2xy).
A person’s assets start reducing in such a way that the rate of reduction of assets is proportional to the square root of the assets existing at that moment. If the assets at the beginning ax ‘ 10 lakhs and they dwindle down to ‘ 10,000 after 2 years, show that the person will be bankrupt in `2 2/9` years from the start.
The population of a town increases at a rate proportional to the population at that time. If the population increases from 40 thousands to 60 thousands in 40 years, what will be the population in another 20 years?
(Given: `sqrt(3/2)= 1.2247)`
The rate of depreciation `(dV)/ dt` of a machine is inversely proportional to the square of t + 1, where V is the value of the machine t years after it was purchased. The initial value of the machine was ₹ 8,00,000 and its value decreased ₹1,00,000 in the first year. Find its value after 6 years.
The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and the present population is 1 lac, when will the city have population 4,00,000?
If the population of a town increases at a rate proportional to the population at that time. If the population increases from 40 thousand to 60 thousand in 40 years, what will be the population in another 20 years? `("Given" sqrt(3/2) = 1.2247)`
Choose the correct alternative:
The integrating factor of `("d"y)/("d"x) + y` = e–x is
Choose the correct alternative:
The integrating factor of `("d"^2y)/("d"x^2) - y` = ex, is e–x, then its solution is
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is ______
The solution of `("d"y)/("d"x) + y` = 3 is ______
In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, find the number of times the bacteria are increased in 12 hours.
Solution: Let x be the number of bacteria in the culture at time t.
Then the rate of increase of x is `"dx"/"dt"` which is proportional to x.
∴ `"dx"/"dt" ∝ "x"`
∴ `"dx"/"dt"` = kx, where k is a constant
∴ `square`
On integrating, we get
`int "dx"/"x" = "k" int "dt"`
∴ log x = kt + c
Initially, i.e. when t = 0, let x = x0
∴ log x0 = k × 0 + c
∴ c = `square`
∴ log x = kt + log x0
∴ log x - log x0 = kt
∴ `log ("x"/"x"_0)`= kt ......(1)
Since the number doubles in 4 hours, i.e. when t = 4,
x = 2x0
∴ `log ((2"x"_0)/"x"_0)` = 4k
∴ k = `square`
∴ equation (1) becomes, `log ("x"/"x"_0) = "t"/4` log 2
When t = 12, we get
`log ("x"/"x"_0) = 12/4` log 2 = 3 log 2
∴ `log ("x"/"x"_0)` = log 23
∴ `"x"/"x"_0 = 8`
∴ x = `square`
∴ number of bacteria will be 8 times the original number in 12 hours.
The population of city doubles in 80 years, in how many years will it be triple when the rate of increase is proportional to the number of inhabitants. `("Given" log3/log2 = 1.5894)`
Solution: Let p be the population at time t.
Then the rate of increase of p is `"dp"/"dt"` which is proportional to p.
∴ `"dp"/"dt" ∝ "p"`
∴ `"dp"/"dt"` = kp, where k is a constant
∴ `"dp"/"p"` = kdt
On integrating, we get
`int "dp"/"p" = "k" int "dt"`
∴ log p = kt + c
Initially, i.e., when t = 0, let p = N
∴ log N = k × 0 + c
∴ c = `square`
When t = 80, p = 2N
∴ log 2N = 80k + log N
∴ log 2N – log N = 80k
∴ `log ((2"N")/"N")` = 80k
∴ log (2) = 80k
∴ k = `square`
∴ p = 3N, then t = ?
∴ log p = `log2/80 "t" + log "N"`
∴ log 3N – log N = `square`
∴ t = `square` = `square` years
If the population grows at the rate of 8% per year, then the time taken for the population to be doubled, is (Given log 2 = 0.6912).
If the lengths of the transverse axis and the latus rectum of a hyperbola are 6 and `8/3` respectively, then the equation of the hyperbola is ______.
The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 7 hours, then in 35 hours its number would be ______.
The length of the perimeter of a sector of a circle is 24 cm, the maximum area of the sector is ______.
If `(dy)/(dx)` = y + 3 > 0 and y = (0) = 2, then y (in 2) is equal to ______.
In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, find the number of times the bacteria are increased in 12 hours.
Solution:
Let N be the number of bacteria present at time ‘t’.
Since the rate of increase of N is proportional to N, the differential equation can be written as –
`(dN)/dt αN`
∴ `(dN)/dt` = KN, where K is constant of proportionality
∴ `(dN)/N` = k . dt
∴ `int 1/N dN = K int 1 . dt`
∴ log N = `square` + C ...(1)
When t = 0, N = N0 where N0 is initial number of bacteria.
∴ log N0 = K × 0 + C
∴ C = log N0
Also when t = 4, N = 2N0
∴ log (2 N0) = K . 4 + `square` ...[From (1)]
∴ `log((2N_0)/N_0)` = 4K,
∴ log 2 = 4K
∴ K = `square` ...(2)
Now N = ? when t = 12
From (1) and (2)
log N = `1/4 log 2 . (12) + log N_0`
log N – log N0 = 3 log 2
∴ `log(N_0/N_0)` = `square`
∴ N = 8 N0
∴ Bacteria are increased 8 times in 12 hours.