Advertisements
Advertisements
प्रश्न
The normal lines to a given curve at each point (x, y) on the curve pass through (2, 0). The curve passes through (2, 3). Find the equation of the curve.
उत्तर
Let P(x, y) be a point on the curve y = f(x).
Then slope of the normal to the curve is `- 1/("dy"/"dx")`
∴ equation of the normal is
`("Y - y") = - 1/("dy"/"dx") ("X - x")`
∴ `("Y - y") "dy"/"dx" = - ("X - x")`
∴ `("Y - y") "dy"/"dx" + ("X - x") = 0`
Since, this normal passes through (2, 0), we get
`(0 - "y") "dy"/"dx" + (2 - "x") = 0`
∴ `- "y" "dy"/"dx" = "x - 2"`
∴ `- "y" "dy" = ("x - 2")"dx"`
Integrating both sides, we get
`int - "y" "dy" = int ("x - 2")"dx"`
∴ `- "y"^2/2 = "x"^2/2 - 2"x" + "c"_1`
∴ `"x"^2/2 + "y"^2/2 - 2"x" + "c"_1 = 0`
∴ x2 + y2 - 4x + 2c1 = 0
∴ x2 + y2 = 4x - 2c1
∴ x2 + y2 = 4x + c, where c = - 2c1
This is the general equation of the curve.
Since, the required curve passed through the point (2, 3), we get
22 + 32 = 4(2) + c
∴ c = 5
∴ equation of the required curve is
x2 + y2 = 4x + 5.
APPEARS IN
संबंधित प्रश्न
In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, find the number of times the bacteria are increased in 12 hours.
If the population of a country doubles in 60 years, in how many years will it be triple (treble) under the assumption that the rate of increase is proportional to the number of inhabitants?
(Given log 2 = 0.6912, log 3 = 1.0986)
If a body cools from 80°C to 50°C at room temperature of 25°C in 30 minutes, find the temperature of the body after 1 hour.
The rate of decay of certain substances is directly proportional to the amount present at that instant. Initially, there is 25 gm of certain substance and two hours later it is found that 9 gm are left. Find the amount left after one more hour.
Find the population of a city at any time t, given that the rate of increase of population is proportional to the population at that instant and that in a period of 40 years, the population increased from 30,000 to 40,000.
Choose the correct option from the given alternatives:
If the surrounding air is kept at 20° C and a body cools from 80° C to 70° C in 5 minutes, the temperature of the body after 15 minutes will be
The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after t seconds.
A person’s assets start reducing in such a way that the rate of reduction of assets is proportional to the square root of the assets existing at that moment. If the assets at the beginning ax ‘ 10 lakhs and they dwindle down to ‘ 10,000 after 2 years, show that the person will be bankrupt in `2 2/9` years from the start.
The rate of depreciation `(dV)/ dt` of a machine is inversely proportional to the square of t + 1, where V is the value of the machine t years after it was purchased. The initial value of the machine was ₹ 8,00,000 and its value decreased ₹1,00,000 in the first year. Find its value after 6 years.
The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and the present population is 1 lac, when will the city have population 4,00,000?
Choose the correct alternative:
The integrating factor of `("d"y)/("d"x) + y` = e–x is
The integrating factor of the differential equation `("d"y)/("d"x) - y` = x is ______
The solution of `("d"y)/("d"x) + y` = 3 is ______
The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and present population is 1 lac., when will the city have population 4,00,000?
Solution: Let p be the population at time t.
Then the rate of increase of p is `"dp"/"dt"` which is proportional to p.
∴ `"dp"/"dt" ∝ "p"`
∴ `"dp"/"dt"` = kp, where k is a constant
∴ `"dp"/"p"` = kdt
On integrating, we get
`int "dp"/"p" = "k"int "dt"`
∴ log p = kt + c
Initially, i.e., when t = 0, let p = 100000
∴ log 100000 = k × 0 + c
∴ c = `square`
∴ log p = kt + log 100000
∴ log p – log 100000 = kt
∴ `log ("P"/100000)` = kt ......(i)
Since the number doubled in 25 years, i.e., when t = 25, p = 200000
∴ `log (200000/100000)` = 25k
∴ k = `square`
∴ equation (i) becomes, `log("p"/100000) = square`
When p = 400000, then find t.
∴ `log(400000/100000) = "t"/25 log 2`
∴ `log 4 = "t"/25 log 2`
∴ t = `25 (log 4)/(log 2)`
∴ t = `square` years
Find the population of city at any time t given that rate of increase of population is proportional to the population at that instant and that in a period of 40 years the population increased from 30000 to 40000.
Solution: Let p be the population at time t.
Then the rate of increase of p is `"dp"/"dt"` which is proportional to p.
∴ `"dp"/"dt" prop "p"`
∴ `"dp"/"dt"` = kp, where k is a constant.
∴ `"dp"/"p"` = k dt
On integrating, we get
`int "dp"/"p" = "k" int "dt"`
∴ log p = kt + c
Initially, i.e. when t = 0, let p = 30000
∴ log 30000 = k × 0 + c
∴ c = `square`
∴ log p = kt + log 30000
∴ log p - log 30000 = kt
∴ `log("p"/30000)` = kt .....(1)
when t = 40, p = 40000
∴ `log (40000/30000) = 40"k"`
∴ k = `square`
∴ equation (1) becomes, `log ("p"/30000)` = `square`
∴ `log ("p"/30000) = "t"/40 log (4/3)`
∴ p = `square`
Bacteria increases at the rate proportional to the number of bacteria present. If the original number N doubles in 4 hours, find in how many hours the number of bacteria will be 16N.
Solution: Let x be the number of bacteria in the culture at time t.
Then the rate of increase of x is `("d"x)/"dt"` which is proportional to x.
∴ `("d"x)/"dt" ∝ x`
∴ `("d"x)/"dt"` = kx, where k is a constant
∴ `("d"x)/x` = kdt
On integrating, we get
`int ("d"x)/x = "k" int "dt"`
∴ log x = kt + c .....(1)
∴ x = aekt where a = ec
Initially, i.e.,when t = 0, let x = N
∴ N = aek(0)
∴ a = `square`
∴ a = N, x = Nekt ......(2)
When t = 4, x = 2N
From equation (2), 2N = Ne4k
∴ e4k = 2
∴ ek = `square`
Now we have to find out t, when x = 16N
From equation (2),
16N = Nekt
∴ 16 = ekt
∴ `"t"/4 = square` hours
Hence, number of bacteria will be 16N in `square` hours
The population of city doubles in 80 years, in how many years will it be triple when the rate of increase is proportional to the number of inhabitants. `("Given" log3/log2 = 1.5894)`
Solution: Let p be the population at time t.
Then the rate of increase of p is `"dp"/"dt"` which is proportional to p.
∴ `"dp"/"dt" ∝ "p"`
∴ `"dp"/"dt"` = kp, where k is a constant
∴ `"dp"/"p"` = kdt
On integrating, we get
`int "dp"/"p" = "k" int "dt"`
∴ log p = kt + c
Initially, i.e., when t = 0, let p = N
∴ log N = k × 0 + c
∴ c = `square`
When t = 80, p = 2N
∴ log 2N = 80k + log N
∴ log 2N – log N = 80k
∴ `log ((2"N")/"N")` = 80k
∴ log (2) = 80k
∴ k = `square`
∴ p = 3N, then t = ?
∴ log p = `log2/80 "t" + log "N"`
∴ log 3N – log N = `square`
∴ t = `square` = `square` years
The rate of decay of certain substance is directly proportional to the amount present at that instant. Initially, there are 27 gm of certain substance and 3 h later it is found that 8 gm are left, then the amount left after one more hour is ______.
The equation of tangent at P(- 4, - 4) on the curve x2 = - 4y is ______.
The bacteria increases at the rate proportional to the number of bacteria present. If the original number 'N' doubles in 4 h, then the number of bacteria in 12 h will be ____________.
If the lengths of the transverse axis and the latus rectum of a hyperbola are 6 and `8/3` respectively, then the equation of the hyperbola is ______.
If r is the radius of spherical balloon at time t and the surface area of balloon changes at a constant rate K, then ______.
The rate of increase of bacteria in a certain culture is proportional to the number present. If it doubles in 7 hours, then in 35 hours its number would be ______.
The length of the perimeter of a sector of a circle is 24 cm, the maximum area of the sector is ______.
In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, complete the following activity to find the number of times the bacteria are increased in 12 hours.
If `(dy)/(dx)` = y + 3 > 0 and y = (0) = 2, then y (in 2) is equal to ______.
In a certain culture of bacteria, the rate of increase is proportional to the number present. If it is found that the number doubles in 4 hours, find the number of times the bacteria are increased in 12 hours.
Solution:
Let N be the number of bacteria present at time ‘t’.
Since the rate of increase of N is proportional to N, the differential equation can be written as –
`(dN)/dt αN`
∴ `(dN)/dt` = KN, where K is constant of proportionality
∴ `(dN)/N` = k . dt
∴ `int 1/N dN = K int 1 . dt`
∴ log N = `square` + C ...(1)
When t = 0, N = N0 where N0 is initial number of bacteria.
∴ log N0 = K × 0 + C
∴ C = log N0
Also when t = 4, N = 2N0
∴ log (2 N0) = K . 4 + `square` ...[From (1)]
∴ `log((2N_0)/N_0)` = 4K,
∴ log 2 = 4K
∴ K = `square` ...(2)
Now N = ? when t = 12
From (1) and (2)
log N = `1/4 log 2 . (12) + log N_0`
log N – log N0 = 3 log 2
∴ `log(N_0/N_0)` = `square`
∴ N = 8 N0
∴ Bacteria are increased 8 times in 12 hours.
Bacteria increase at the rate proportional to the number of bacteria present. If the original number N doubles in 3 hours, find in how many hours the number of bacteria will be 4N?
The rate of growth of population is proportional to the number present. If the population doubled in the last 25 years and the present population is 1,00,000, when will the city have population 4,00,000?
Let ‘p’ be the population at time ‘t’ years.
∴ `("dp")/"dt" prop "p"`
∴ Differential equation can be written as `("dp")/"dt" = "kp"`
where k is constant of proportionality.
∴ `("dp")/"p" = "k.dt"`
On integrating we get
`square` = kt + c ...(i)
(i) Where t = 0, p = 1,00,000
∴ from (i)
log 1,00,000 = k(0) + c
∴ c = `square`
∴ log `("p"/(1,00,000)) = "kt"` ...(ii)
(ii) When t = 25, p = 2,00,000
as population doubles in 25 years
∴ from (ii) log2 = 25k
∴ k = `square`
∴ log`("p"/(1,00,000)) = (1/25log2).t`
(iii) ∴ when p = 4,00,000
`log ((4,00,000)/(1,00,000)) = (1/25log2).t`
∴ `log 4 = (1/25 log2).t`
∴ t = `square ` years