Advertisements
Advertisements
प्रश्न
Evaluate `int_0^1 x(1 - x)^5 "d"x`
उत्तर
Let I = `int_0^1 x(1 - x)^5 "d"x`
= `int_0^1 (1 - x)[1 - (1 - x)]^5 "d"x` ......`[because int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x]`
= `int_0^1(1 - x)x^5 "d"x`
= `int_0^1(x^5 - x^6) "d"x`
= `int_0^1 x^5 "d"x - int_0^1 x^6 "d"x`
= `[x^6/6]_0^1 - [x^7/7]_0^1`
= `1/6 (1^6 - 0) - 1/7 (1^7 - 0)`
= `1/6 - 1/7`
∴ I = `1/42`
APPEARS IN
संबंधित प्रश्न
Evaluate : `intsec^nxtanxdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
Find `dy/dx, if y = cos^-1 ( sin 5x)`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?
`int_0^{pi/2} log(tanx)dx` = ______
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
f(x) = `{:{(x^3/k; 0 ≤ x ≤ 2), (0; "otherwise"):}` is a p.d.f. of X. The value of k is ______
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.
Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
Evaluate: `int_0^π 1/(5 + 4 cos x)dx`
`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.
`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.
Evaluate `int_0^(π//4) log (1 + tanx)dx`.
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is ______.
For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x dx` is ______.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
Evaluate the following limit :
`lim_("x"->3)[sqrt("x"+6)/"x"]`
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Solve the following.
`int_0^1 e^(x^2) x^3dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2)dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`