Advertisements
Advertisements
प्रश्न
Evaluate `int_0^"a" x^2 ("a" - x)^(3/2) "d"x`
उत्तर
Let I = `int_0^"a" x^2 ("a" - x)^(3/2) "d"x`
= `int_0^"a" ("a" - x)^2 ["a" - ("a" - x)]^(3/2) "d"x` ......`[because int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x]`
= `int_0^"a"("a"^2 - 2"a"x + x^2)x^(3/2) "d"x`
= `int_0^"a"("a"^2x^(3/2) - 2"a"x^(5/2) + x^(7/2))"d"x`
= `"a"^2 int_0^"a" x^(3/2) "d"x - 2"a" int_0^"a" x^(5/2) "d"x + int_0^"a" x^(7/2) "d"x`
= `"a"^2[(x^(5/2))/(5/2)]_0^"a" - 2"a"[(x^(7/2))/(7/2)]_0^"a" + [(x^(9/2))/(9/2)]_0^"a"`
= `(2"a"^2)/5 [("a")^(5/2) - 0] - (4"a")/7 [("a")^(7/2) - 0] + 2/9 [("a")^(9/2) - 0]`
= `2/5"a"^(9/2) - 4/7"a"^(9/2) + 2/9"a"^(9/2)`
= `(2/5 - 4/7 + 2/9)"a"^(9/2)`
= `((126 - 180 + 70)/315)"a"^(9/2)`
∴ I = `16/315"a"^(9/2)`
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Evaluate the following definite integrals: `int_2^3 x/((x + 2)(x + 3)). dx`
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Choose the correct alternative :
`int_(-2)^3 dx/(x + 5)` =
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate:
`int_1^2 1/(x^2 + 6x + 5) dx`
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Solve the following `int_1^3 x^2log x dx`
Evaluate the following integrals:
`int_-9^9 (x^3)/(4 - x^2) dx`
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`