Advertisements
Advertisements
प्रश्न
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
उत्तर
Let I = `int_0^1 "e"^(x^2)*"x"^3 "d"x`
= `int_0^1 "e"^(x^2)*x^2* x "d"x`
Put x2 = t
∴ 2x dx = dt
∴ x dx = `1/2 "dt"`
When x = 0, t = 0
When x = 1, t = 1
∴ I = `1/2 int_0^1 "e"^"t"*"t" "dt"`
= `1/2{["t"int"e"^"t" "dt"]_0^1 - int_0^1["d"/"dt"("t")int"e"^"t" "dt"]"dt"}`
= `1/2[["t"*"e"^"t"]_0^1 - int_0^1 1*"e"^"t" "dt"]`
= `1/2 [(1*"e"^1 - 0) - ["e"^"t"]_0^1]`
= `1/2 ["e" - ("e"^1 - "e"^0)]`
= `1/2 ("e" - "e" + 1)`
∴ I = `1/2`
APPEARS IN
संबंधित प्रश्न
Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
Fill in the blank : `int_0^2 e^x*dx` = ________
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following integrals:
`int_-9^9 (x^3)/(4 - x^2) dx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`