Advertisements
Advertisements
प्रश्न
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
उत्तर
Let I = `int_2^4 x/(x^2 + 1)*dx`
Put x2 + 1 = t
∴ 2x·dx = dt
∴ x·dx = `"dt"/(2)`
When x = 2, t = 22 + 1 = 5
When x = 4, t = 42 + 1 = 17
∴ I = `int_5^17 (1)/"t"*"dt"/2`
= `(1)/(2) int_5^17 "dt"/"t"`
= `(1)/(2)[log|"t"|]_5^17`
= `(1)/(2)(log 17 - log 5)`
∴ I = `(1)/(2)log (17/5)`.
APPEARS IN
संबंधित प्रश्न
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Solve the following.
`int_1^3x^2log x dx`