Advertisements
Advertisements
प्रश्न
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
उत्तर
Let I = `int_0^1 (1)/(2x - 3)*dx`
Put 2x – 3 =t
∴ 2·dx = dt
∴ dx = `"dt"/(2)`
When x = 0t = 2(0) – 3 = – 3
When x = 1, t = 2(1) – 3 = – 1
∴ I = `int_(-3)^(-1) (1)/"t"*"dt"/(2)`
= `(1)/(2) int_(-3)^(-1) "dt"/"t"`
= `(1)/(2)[log |"t"|]_(-3)^(-1)`
= `(1)/(2)[log|-1| - log|-3|]`
= `(1)/(2)(log 1 - log 3)`
= `(1)/(2)(0 - log 3)`
∴ I = `-(1)/(2) log 3`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
`int_0^(log5) (e^x sqrt(e^x - 1))/(e^x + 3) * dx` = ______.
Choose the correct alternative :
`int_0^2 e^x*dx` =
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
Evaluate the following definite intergral:
`int_1^3 logx dx`
`int_0^(π/2) (sin^2 x.dx)/(1 + cosx)^2` = ______.
`int_a^b f(x) dx = int_a^b f (t) dt`
Evaluate the following definite intergral:
`int_1^3logxdx`
Evaluate the following definite intergral:
`int_1^2 (3x)/ ((9x^2 -1)) dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`