Advertisements
Advertisements
प्रश्न
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = ______.
विकल्प
1
2
4
0
उत्तर
If `int_((-pi)/4) ^(pi/4) x^3 * sin^4 x dx` = k then k = 0.
Explanation:
Let I = `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Let f(x) = `x^3 sin^4x`
∴ f( –x) = `(-x)^3 sin^4(- x)`
= `-x^3sin^4x`
= `-f(x)`
∴ f is an odd function.
∴ `int_((-pi)/4)^(pi/4) f(x)*dx = 0`,
i.e. `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx = 0` ...(Property of def integration)
⇒ k = 0
APPEARS IN
संबंधित प्रश्न
Prove that:
`{:(int_(-a)^a f(x) dx = 2 int_0^a f(x) dx",", "If" f(x) "is an even function"),( = 0",", "if" f(x) "is an odd function"):}`
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
Evaluate:
`int_0^1 (1)/sqrt(3 + 2x - x^2)*dx`
Evaluate : `int_0^1 x tan^-1x*dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate the following : `int_0^pi x sin x cos^2x*dx`
Evaluate the following : `int_0^1 (logx)/sqrt(1 - x^2)*dx`
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_(-"b")^(-"a") f(x)*dx`
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
State whether the following is True or False : `int_(-5)^(5) x^3/(x^2 + 7)*dx` = 0
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
Solve the following : `int_4^9 (1)/sqrt(x)*dx`
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
Choose the correct alternative:
`int_0^"a" 3x^5 "d"x` = 8, then a =
Evaluate `int_0^1 1/(sqrt(1 + x) + sqrt(x)) "d"x`
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
`int_2^3 "x"/("x"^2 - 1)` dx = ____________.
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5dx`
`int_0^1 1/(2x + 5)dx` = ______
Evaluate:
`int_0^1 |x| dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/ ((9x^2 -1)) dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`
Solve the following.
`int_1^3x^2 logx dx`