Advertisements
Advertisements
प्रश्न
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
उत्तर
Let I = `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
= `int_1^2 e^(2x)* (1)/xdx - int_1^2 e^(2x)* (1)/(2x^2)dx`
= `[(1)/x inte^(2x)*dx]_1^2 - int_1^2[d/dx(1/x)int e^(2x)*dx]dx - (1)/(2)`
= `[1/x* (e^(2x))/(2)]_1^2 - int_1^2(-1/x^2)*( e^(2x))/(2)dx - (1)/(2) int_1^2 e^(2x) 1/x^2*dx`
= `(1/4 e^4 - e^2/2) + (1)/(2) int_1^2 e^(2x)* (1)/x^2dx - (1)/(2) int_1^2 e^(2x)* (1)/x^2dx`
∴ I = `e^4/(4) - e^2/(2)`.
APPEARS IN
संबंधित प्रश्न
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Choose the correct alternative :
`int_(-9)^9 x^3/(4 - x^2)*dx` =
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
`int_1^2 x^2 "d"x` = ______
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Evaluate the following definite intergral:
`int_1^3logxdx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`