Advertisements
Advertisements
प्रश्न
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
उत्तर
Let I = `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
= `int_1^2 e^(2x)* (1)/xdx - int_1^2 e^(2x)* (1)/(2x^2)dx`
= `[(1)/x inte^(2x)*dx]_1^2 - int_1^2[d/dx(1/x)int e^(2x)*dx]dx - (1)/(2)`
= `[1/x* (e^(2x))/(2)]_1^2 - int_1^2(-1/x^2)*( e^(2x))/(2)dx - (1)/(2) int_1^2 e^(2x) 1/x^2*dx`
= `(1/4 e^4 - e^2/2) + (1)/(2) int_1^2 e^(2x)* (1)/x^2dx - (1)/(2) int_1^2 e^(2x)* (1)/x^2dx`
∴ I = `e^4/(4) - e^2/(2)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_(-1)^1 (1)/(a^2e^x + b^2e^(-x))*dx`
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
If `int_0^"a" (2x + 1) "d"x` = 2, find a
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`
Solve the following.
`int_1^3x^2logx dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`