Advertisements
Advertisements
प्रश्न
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
उत्तर
Let I = `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
= `int_0^1 (1)/(sqrt(1 + x) + sqrt(x)) xx (sqrt(1 + x) - sqrt(x))/(sqrt(1 + x) - sqrt(x))dx`
= `int_0^1 (sqrt(1 + x) - sqrt(x))/((sqrt(1 + x))^2 - (sqrt(x)^2)`dx
= `int_0^1 (sqrt(1 + x) - sqrt(x))/(1 + x - x)dx`
= `int_0^1[(1 + x)^(1/2) - x^(1/2)]dx`
= `int_0^1 (1 + x)^(1/2)dx - int_0^1 x^(1/2)dx`
= `[((1 + x)^(1/2))/(3/2)]_0^1 - [(x^(3/2))/(3/2)]_0^1`
= `(2)/(3) [(2)^(3/2) - (1)^(3/2)] - (2)/(3) [(1)^(3/2) - 0]`
= `(2)/(3)(2sqrt(2) - 1) - (2)/(3)(1)`
= `(4sqrt(2))/(3) - (2)/(3) - (2)/(3)`
= `(4sqrt2)/3 - 4/3`
∴ I = `(4)/(3) (sqrt(2) - 1)`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x) "d"x`
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate:
`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`
Evaluate:
`int_0^1 |x| dx`
`int_a^b f(x) dx = int_a^b f (t) dt`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Solve the following.
`int_1^3 x^2 logxdx`