Advertisements
Advertisements
प्रश्न
Solve the following : `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
उत्तर
Let I = `int_3^5 dx/(sqrt(x + 4) + sqrt(x - 2)`
= `int_3^5 (1)/(sqrt(x + 4) + sqrt(x - 2)) xx (sqrt(x + 4) - sqrt(x - 2))/(sqrt(x + 4) - sqrt(x - 2))*dx`
= `int_3^5 (sqrt(x + 4) - sqrt(x - 2))/((sqrt(x + 4))^2 - (sqrt(x - 2))^2)*dx`
= `int_3^5 (sqrt(x + 4) - sqrt(x - 2))/(x + 4 - (x - 2))*dx`
= `int_3^5 (sqrt(x + 4) - sqrt(x - 2))/(6)*dx`
= `(1)/(6) int_3^5 (x + 4)^(1/2)*dx - (1)/(6) int_3^5 (x - 2)^(1/2)*dx`
= `(1)/(6) [((x + 4)^(3/2))/(3/2)]_3^5 - (1)/(6)[((x - 2)^(3/2))/(3/2)]_3^5`
= `(1)/(9)[(9)^(3/2) - (7)^(3/2)] - (1)/(9) [(3)^(3/2) - (1)^(3/2)]`
= `(1)/(9) (27 - 7sqrt(7)) - (1)/(9) (3sqrt(3) - 1)`
= `(1)/(9)(27 - 7sqrt(7) - 3sqrt(3) + 1)`
∴ I = `(1)/(9)(28 - 3sqrt(3) - 7sqrt(7))`.
APPEARS IN
संबंधित प्रश्न
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Fill in the blank : `int_(-2)^3 dx/(x + 5)` = _______
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Evaluate the following definite integral:
`int_1^3 log x dx`
`int_0^4 1/sqrt(4x - x^2)dx` = ______.
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtxdx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite integrals: `int_1^2 (3x)/((9x^2 - 1))*dx`
Evaluate the following definite intergral:
`int_1^2(3x)/(9x^2-1).dx`