Advertisements
Advertisements
प्रश्न
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
विकल्प
0
1
2
`pi`
उत्तर
0
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_3^5 (1)/(sqrt(2x + 3) - sqrt(2x - 3))*dx`
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate : `int_0^1 x tan^-1x*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Evaluate the following:
`int_0^(pi/2) log(tanx)dx`
Evaluate the following : `int_(-3)^(3) x^3/(9 - x^2)*dx`
Evaluate the following:
`int_((-pi)/2)^(pi/2) log((2 + sin x)/(2 - sin x)) * dx`
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Evaluate the following definite integral:
`int_(-2)^3 (1)/(x + 5)*dx`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Choose the correct alternative :
`int_0^2 e^x*dx` =
Fill in the blank : `int_0^1 dx/(2x + 5)` = _______
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
If `int_1^"a" (3x^2 + 2x + 1) "d"x` = 11, find the real value of a
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x + 5)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Evaluate the following definite intergral:
`int_1^3logxdx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`