हिंदी

Evaluate the following : ∫0π2log(tanx)⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int_0^(pi/2) log(tanx)dx`

योग

उत्तर

Let I = `int_0^(pi/2) log(tanx)dx`

We use the property, `int_0^a f(x)dx = int_0^a f(a - x)dx`

Here, `a = pi/(2)`

Hence, changing x by `pi/(2) - x`, we get

I = `int_0^(pi/2) log[tan(pi/2 - x)]dx`

= `int_0^(pi/2) log(cotx)dx`

= `int_0^(pi/2) log(1/tanx)dx`

= `int_0^(pi/2) log(tanx)^-1dx`

= `int_0^(pi/2) - log(tanx)dx`

= `- int_0^(pi/2) log(tanx)dx`

= – I

∴ 2I = 0

∴ I = 0

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Exercise 4.2 [पृष्ठ १७२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Exercise 4.2 | Q 3.02 | पृष्ठ १७२

संबंधित प्रश्न

Evaluate:

`int_0^(pi/4) sqrt(1 + sin 2x)*dx`


Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`


Evaluate : `int_0^(pi/4) (cosx)/(4 - sin^2x)*dx`


Evaluate : `int_0^(pi/4) sec^4x*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


Choose the correct option from the given alternatives : 

`int_0^(pi/2) sn^6x cos^2x*dx` =


Choose the correct option from the given alternatives : 

If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following definite integral:

`int_(-2)^3 (1)/(x + 5)*dx`


Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.


Choose the correct alternative :

`int_(-9)^9 x^3/(4 - x^2)*dx` =


Choose the correct alternative :

`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Fill in the blank : `int_2^3 x^4*dx` = _______


Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______


State whether the following is True or False : `int_(-5)^(5)  x^3/(x^2 + 7)*dx` = 0


Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`


Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`


State whether the following statement is True or False:

`int_0^"a" 3x^2  "d"x` = 27, then a = 2.5


Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x)  "d"x`


If `int_0^"a" (2x + 1)  "d"x` = 2, find a


Evaluate `int_0^"a" x^2 ("a" - x)^(3/2)  "d"x`


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Evaluate the following definite integrals:

`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/((9x^2 - 1))dx`


Evaluate the following definite intergrals. 

`int_1^3 logx* dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Solve the following.

`int_1^3x^2 logx dx`


Solve the following.

`int_0^1 e^(x^2) x^3 dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5) *dx`


Evaluate the following definite integral:

`int_1^3 logx  dx`


Solve the following.

`int_0^1 e^(x^2) x^3  dx`


Evaluate the following definite intergral:

`int_1^2(3x)/(9x^2-1).dx`


Evaluate the integral.

`int_-9^9 x^3/(4-x^2) dx`


Solve the following.

`int_0^1e^(x^2) x^3 dx`


Evaluate the following definite intergral:

`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`


Solve the following.

`int_1^3x^2 logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×