Advertisements
Advertisements
प्रश्न
Evaluate `int_0^1 (x^2 + 3x + 2)/sqrt(x) "d"x`
उत्तर
Let I = `int_0^1 (x^2 + 3x + 2)/sqrt(x) "d"x`
= `int_0^1 ((x^2 + 3x + 2)/x^(1/2)) "d"x`
= `int_0^1 (x^2/x^(1/2) + (3x)/(x^(1/2)) + 2/(x^(1/2))) "d"x`
= `int_0^1 (x^(3/2) + 3x^(1/2) + 2x^(-1/2)) "d"x`
= `int_0^1 x^(3/2) "d"x + 3int_0^1 x^(1/2) "d"x + 2int_0^1 x^(-1/2) "d"x`
= `[(x^(5/2))/(5/2)]_0^1 + 3[(x^(3/2))/(3/2)]_0^1 + 2[(x^(1/2))/(1/2)]_0^1`
= `2/5(1 - 0) + 3 xx 2/3(1 - 0) + 2 xx 2(1 - 0)`
= `2/5 + 2 + 4`
∴ I = `32/5`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Choose the correct option from the given alternatives :
The value of `int_((-pi)/4)^(pi/4) log((2+ sin theta)/(2 - sin theta))*d theta` is
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Solve the following : `int_0^1 (x^2 + 3x + 2)/sqrt(x)*dx`
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
Choose the correct alternative:
`int_4^9 ("d"x)/sqrt(x)` =
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Solve the following `int_1^3 x^2log x dx`
Evaluate the following definite intergral:
`int_1^3 log xdx`
Evaluate the following definite intergral:
`int _1^3logxdx`
`int_a^b f(x) dx = int_a^b f (t) dt`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`