Advertisements
Advertisements
प्रश्न
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
उत्तर
Let I = `int_(-9)^9 x^3/(4 - x^2)*dx`
Let f(x) = `x^3/(4 - x^2)`
∴ f(– x) = `(-x)^2/(4 - (-x)^2`
= `-x^3/(4 - x^2)`
= – f(x)
∴ f(x) is an odd function.
∴ `int_(-9)^9 x^3/(4 - x^2)*dx = 0. ...[because int_("a")^"a" f(x) = 0, if f(x) "odd function"]`
APPEARS IN
संबंधित प्रश्न
Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`
Evaluate : `int_0^1 x tan^-1x*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Choose the correct option from the given alternatives :
If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to
Evaluate the following definite integrals: `int_1^2 dx/(x^2 + 6x + 5)`
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
Solve the following : `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))dx`
Evaluate `int_1^3 log x "d"x`
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1))dx`
`int_a^b f(x) dx = int_a^b f (t) dt`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`