Advertisements
Advertisements
प्रश्न
Evaluate `int_1^3 log x "d"x`
उत्तर
Let I = `int_1^3 log x "d"x`
= `int_1^3 logx*1 "d"x`
= `[log x int 1*"d"x]_1^3 - int_1^3["d"/("d"x) (log x) int1*"d"x] "d"x`
= `[logx*(x)]_1^3 - int_1^3 1/x*x "d"x`
= `[x log x]_1^3 - int_1^3 1*"d"x`
= (3 log 3 – 1 log 1) – `[x]_1^3`
= (3 log 3 – 0) – (3 – 1)
= 3 log 3 – 2
= log 33 – 2
∴ I = log 27 – 2
APPEARS IN
संबंधित प्रश्न
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Choose the correct option from the given alternatives :
`int_0^(pi/2) sn^6x cos^2x*dx` =
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
Solve the following : `int_2^3 x/(x^2 + 1)*dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
Solve the following : `int_0^9 (1)/(1 + sqrt(x))*dx`
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
State whether the following statement is True or False:
`int_2^3 x/(x^2 + 1) "d"x = 1/2 log 2`
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Solve the following.
`int_1^3x^2logx dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`