Advertisements
Advertisements
प्रश्न
Evaluate `int_2^3 x/((x + 2)(x + 3)) "d"x`
उत्तर
Let I = `int_2^3 x/((x + 2)(x + 3)) "d"x`
Let `x/((x + 2) x + 3) = "A"/(x + 2) + "B"/(x + 3)` .....(i)
∴ x = A(x + 3) + B(x + 2) ......(ii)
Putting x = – 3 in (ii), we get
– 3 = – B
∴ B = 3
Putting x = – 2 in (ii), we get
– 2 = A
∴ A = – 2
From (i), we get
`x/((x + 2)(x + 3)) = (-2)/(x + 2) + 3/(x + 3)`
∴ I = `int_2^3[(-2)/(x + 2) + 3/(x + 3)] "d"x`
= `-2 int_2^3 1/(x + 2) "d"x + 3 int_2^3 1/(x + 3) "d"x`
= `-2[log|x + 2|]_2^3 + 3[log|x + 3|]_2^3`
= – 2(log 5 – log 4) + 3(log 6 – log 5)
= `- 2 log(5/4) + 3 log(6/5)`
= `3 log(6/5) - 2log(5/4)`
= `log (6/5)^3 - log(5/4)^2`
= `log(216/125) - log(25/16)`
= `log(216/125 xx 16/25)`
∴ I = `log(3456/3125)`
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`
Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`
Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
Choose the correct alternative :
`int_2^3 x^4*dx` =
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`
Solve the following : `int_1^2 x^2*dx`
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`
Solve the following.
`int_1^3x^2 logx dx`