हिंदी

Evaluate ∫23x(x+2)(x+3) dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate `int_2^3 x/((x + 2)(x + 3))  "d"x`

योग

उत्तर

Let I =  `int_2^3 x/((x + 2)(x + 3))  "d"x`

Let `x/((x + 2) x + 3) = "A"/(x + 2) + "B"/(x + 3)`  .....(i)

∴ x = A(x + 3) + B(x + 2)   ......(ii)

Putting x = – 3 in (ii), we get

– 3 = – B

∴ B = 3

Putting x = – 2 in (ii), we get

– 2 = A

∴ A = – 2

From (i), we get

`x/((x + 2)(x + 3)) = (-2)/(x + 2) + 3/(x + 3)`

∴ I = `int_2^3[(-2)/(x + 2) + 3/(x + 3)]  "d"x`

= `-2 int_2^3 1/(x + 2)  "d"x + 3 int_2^3 1/(x + 3)  "d"x`

= `-2[log|x + 2|]_2^3 + 3[log|x + 3|]_2^3`

= – 2(log 5 – log 4) + 3(log 6 –  log 5)

= `- 2 log(5/4) + 3 log(6/5)`

= `3 log(6/5) - 2log(5/4)`

= `log (6/5)^3 - log(5/4)^2`

= `log(216/125) - log(25/16)`

= `log(216/125 xx 16/25)`

∴ I = `log(3456/3125)`

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.6: Definite Integration - Q.5

संबंधित प्रश्न

Evaluate : `int_0^(pi/4) sin^4x*dx`


Evaluate : `int_0^4 (1)/sqrt(4x - x^2)*dx`


Evaluate : `int_0^(1/sqrt(2)) (sin^-1x)/(1 - x^2)^(3/2)*dx`


Evaluate : `int_0^(pi//4) (sin2x)/(sin^4x + cos^4x)*dx`


Choose the correct option from the given alternatives : 

`int_1^2 (1)/x^2 e^(1/x)*dx` = 


Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`


Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`


Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`


Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`


Choose the correct alternative :

`int_2^3 x^4*dx` =


State whether the following is True or False :  `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`


State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`


Solve the following : `int_(-2)^3 (1)/(x + 5)*dx`


Solve the following : `int_1^2 x^2*dx`


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"c""f"(x)  "d"x + int_"c"^"b"  "f"(x)  "d"x`, where a < c < b


Prove that: `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`. Hence find `int_0^(pi/2) sin^2x  "d"x` 


State whether the following statement is True or False:

`int_0^1 1/(2x + 5)  "d"x = log(7/5)`


Evaluate `int_0^1 "e"^(x^2)*"x"^3  "d"x`


Evaluate the following definite integrats: 

`int_4^9 1/sqrt x dx`


Evaluate the following definite integrals:

`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite integral :

`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`


Evaluate the following integrals:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Solve the following.

`int_0^1 e^(x^2) x^3 dx`


Solve the following.

`int_0 ^1 e^(x^2) * x^3`dx


Evaluate the following definite intergral.

`int_4^9 1/sqrtx .dx`


Evaluate the following definite intergral:

`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`


Solve the following.

`int_1^3x^2 logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×