Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
उत्तर
Let I = `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
= `int_(-1)^(1)[1/(9 - x^2) + x^3/(9 - x^2)]*dx`
= `int_(-1)^(1) 1/(9 - x^2)*dx + int_(-1)^(1) x^3/(9 - x^2)*dx`
∴ I = I1 + I2 ....(1)
I1 = `int_(-1)^(1) 1/(3^2 - x^2)*dx`
= `(1)/(2 xx 3)[log|(3 + x)/(3 - x)|]_(-1)^(1)`
= `(1)/(6)[log (4/2) - log(2/4)]`
= `(1)/(6)[log(2/(1/2))]`
= `(1)/(6)log 4`
= `(1)/(6)log 2^2`
= `(1)/(6) xx 2log2`
= `(1)/(3)log2` ...(2)
I2 = `int_(-1)^(1) x^3/(9 - x^2)*dx`
Let f(x) = `x^3/(9 - x^2)`
∴ f(– x) = `(- x)^3/(9 - (- x)^2`
= `(-x)^3/(9 - x^2)`
= – f(x)
∴ f is an odd function.
∴ `int_(-1)^(1) f(x)*dx` = 0
∴ I2 = `int_(-1)^(1) x^3/(9 - x^2)*dx` = 0 ...(3)
From (1),(2) and (3), we get
I = `(1)/(3)log2 + 0`
= `(1)/(3)log2`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`
Choose the correct option from the given alternatives :
Let I1 = `int_e^(e^2) dx/logx "and" "I"_2 = int_1^2 e^x/x*dx`, then
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`
Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following definite integral:
`int_(-2)^3 (1)/(x + 5)*dx`
Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`
Solve the following:
`int_1^3 x^2 log x*dx`
Solve the following:
`int_0^1 e^(x^2)*x^3dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
Prove that: `int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x) "d"x`. Hence find `int_0^(pi/2) sin^2x "d"x`
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
If `int_0^"a" (2x + 1) "d"x` = 2, find a
Evaluate the following definite integral:
`int_1^3 log x dx`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5) *dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Solve the following.
`int_1^3x^2logx dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_(-2)^3 1/(x + 5)dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`