हिंदी

Evaluate the following : ∫-111+x39-x2⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`

योग

उत्तर

Let I = `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`

= `int_(-1)^(1)[1/(9 - x^2) + x^3/(9 - x^2)]*dx`

= `int_(-1)^(1) 1/(9 - x^2)*dx + int_(-1)^(1) x^3/(9 - x^2)*dx`

∴ I = I1 + I2                                ....(1)

I1 = `int_(-1)^(1) 1/(3^2 - x^2)*dx`

= `(1)/(2 xx 3)[log|(3 + x)/(3 - x)|]_(-1)^(1)`

= `(1)/(6)[log (4/2) - log(2/4)]`

= `(1)/(6)[log(2/(1/2))]`

= `(1)/(6)log 4`

= `(1)/(6)log 2^2`

= `(1)/(6) xx 2log2`

= `(1)/(3)log2`                                 ...(2)

I2 = `int_(-1)^(1) x^3/(9 - x^2)*dx`

Let f(x) = `x^3/(9 - x^2)`

∴ f(– x) = `(- x)^3/(9 - (- x)^2`

= `(-x)^3/(9 - x^2)`

= – f(x)

∴ f is an odd function.

∴ `int_(-1)^(1) f(x)*dx` = 0

∴ I2 = `int_(-1)^(1) x^3/(9 - x^2)*dx` = 0        ...(3)

From (1),(2) and (3), we get

I = `(1)/(3)log2 + 0`

= `(1)/(3)log2`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 4 Definite Integration
Miscellaneous Exercise 4 | Q 2.07 | पृष्ठ १७६

संबंधित प्रश्न

Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`


Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`


Evaluate the following : `int_((-pi)/4)^(pi/4) x^3 sin^4x*dx`


Choose the correct option from the given alternatives :

Let I1 = `int_e^(e^2) dx/logx  "and"  "I"_2 = int_1^2 e^x/x*dx`, then


Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos  theta/2 + sin  theta/2]^3*d theta`


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`


Evaluate the following : `int_0^a 1/(a^2 + ax - x^2)*dx`


Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`


Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`


Evaluate the following : `int_0^4 [sqrt(x^2 + 2x + 3]]^-1*dx`


Evaluate the following : if `int_a^a sqrt(x)*dx = 2a int_0^(pi/2) sin^3x*dx`, find the value of `int_a^(a + 1)x*dx`


Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k


Evaluate the following definite integral:

`int_(-2)^3 (1)/(x + 5)*dx`


Evaluate the following definite integrals: `int_0^1 (1)/(sqrt(1 + x) + sqrt(x))*dx`


Solve the following:

`int_1^3 x^2 log x*dx`


Solve the following:

`int_0^1 e^(x^2)*x^3dx`


Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`


Solve the following : `int_1^2 dx/(x(1 + logx)^2`


Prove that: `int_0^"a" "f"(x)  "d"x = int_0^"a" "f"("a" - x)  "d"x`. Hence find `int_0^(pi/2) sin^2x  "d"x` 


Choose the correct alternative:

`int_2^3 x^4  "d"x` =


State whether the following statement is True or False: 

`int_0^(2"a") "f"(x)  "d"x = int_0^"a" "f"(x)  "d"x + int_0^"a" "f"("a" - x)  "d"x`


If `int_0^"a" (2x + 1)  "d"x` = 2, find a


Evaluate the following definite integral:

`int_1^3 log x  dx`


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5) *dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Solve the following:

`int_1^3 x^2 log x dx`


Evaluate the following definite intergral:

`int_1^3 log x·dx`


Solve the following.

`int_1^3x^2logx  dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral:

`int_(-2)^3 1/(x + 5)dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×