मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : ∫-111+x39-x2⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`

बेरीज

उत्तर

Let I = `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`

= `int_(-1)^(1)[1/(9 - x^2) + x^3/(9 - x^2)]*dx`

= `int_(-1)^(1) 1/(9 - x^2)*dx + int_(-1)^(1) x^3/(9 - x^2)*dx`

∴ I = I1 + I2                                ....(1)

I1 = `int_(-1)^(1) 1/(3^2 - x^2)*dx`

= `(1)/(2 xx 3)[log|(3 + x)/(3 - x)|]_(-1)^(1)`

= `(1)/(6)[log (4/2) - log(2/4)]`

= `(1)/(6)[log(2/(1/2))]`

= `(1)/(6)log 4`

= `(1)/(6)log 2^2`

= `(1)/(6) xx 2log2`

= `(1)/(3)log2`                                 ...(2)

I2 = `int_(-1)^(1) x^3/(9 - x^2)*dx`

Let f(x) = `x^3/(9 - x^2)`

∴ f(– x) = `(- x)^3/(9 - (- x)^2`

= `(-x)^3/(9 - x^2)`

= – f(x)

∴ f is an odd function.

∴ `int_(-1)^(1) f(x)*dx` = 0

∴ I2 = `int_(-1)^(1) x^3/(9 - x^2)*dx` = 0        ...(3)

From (1),(2) and (3), we get

I = `(1)/(3)log2 + 0`

= `(1)/(3)log2`.

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Miscellaneous Exercise 4 [पृष्ठ १७६]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 4 Definite Integration
Miscellaneous Exercise 4 | Q 2.07 | पृष्ठ १७६

संबंधित प्रश्‍न

Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`


Evaluate:

`int_0^(pi/2) sqrt(cos x) sin^3x * dx`


Evaluate : `int_0^(pi/4) sec^4x*dx`


Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`


Choose the correct option from the given alternatives :

If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then


Choose the correct option from the given alternatives : 

`int_1^2 (1)/x^2 e^(1/x)*dx` = 


Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`


Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`


Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`


Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`


Evaluate the following definite integral:

`int_(-2)^3 (1)/(x + 5)*dx`


Choose the correct alternative :

`int_2^3 x/(x^2 - 1)*dx` =


Choose the correct alternative :

`int_0^2 e^x*dx` =


Choose the correct alternative :

`int_"a"^"b" f(x)*dx` =


Choose the correct alternative :

`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


Fill in the blank : `int_2^3 x^4*dx` = _______


Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______


State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`


Solve the following : `int_(-4)^(-1) (1)/x*dx`


Choose the correct alternative:

`int_(-2)^3 1/(x + 5)  "d"x` =


`int_1^2 x^2  "d"x` = ______


Evaluate `int_1^"e" 1/(x(1 + log x)^2)  "d"x`


Evaluate `int_1^3 log x  "d"x`


Evaluate the following definite integral :

`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`


Evaluate the following integrals:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5dx`


Solve the following.

`int_1^3x^2 logx dx`


Evaluate:

`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`


Evaluate:

`int_0^1 |x| dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Evaluate the following definite integral:

`int_1^3 logx  dx`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following definite intergral:

`int_1^3logxdx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Solve the following.

`int_0^1 e^(x^2) x^3  dx`


Evaluate the following integral. 

`int_-9^9 x^3/(4-x^2)` dx


Evaluate the following definite intergral:

`int_-2^3 1/(x+5).dx`


Evaluate the integral.

`int_-9^9 x^3/(4-x^2) dx`


Evaluate the following definite integral:

`int_-2^3 1/(x+5).dx`


Solve the following.

`int_1^3 x^2 logxdx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×