Advertisements
Advertisements
प्रश्न
Evaluate the following : `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
उत्तर
Let I = `int_(-1)^(1) (1 + x^3)/(9 - x^2)*dx`
= `int_(-1)^(1)[1/(9 - x^2) + x^3/(9 - x^2)]*dx`
= `int_(-1)^(1) 1/(9 - x^2)*dx + int_(-1)^(1) x^3/(9 - x^2)*dx`
∴ I = I1 + I2 ....(1)
I1 = `int_(-1)^(1) 1/(3^2 - x^2)*dx`
= `(1)/(2 xx 3)[log|(3 + x)/(3 - x)|]_(-1)^(1)`
= `(1)/(6)[log (4/2) - log(2/4)]`
= `(1)/(6)[log(2/(1/2))]`
= `(1)/(6)log 4`
= `(1)/(6)log 2^2`
= `(1)/(6) xx 2log2`
= `(1)/(3)log2` ...(2)
I2 = `int_(-1)^(1) x^3/(9 - x^2)*dx`
Let f(x) = `x^3/(9 - x^2)`
∴ f(– x) = `(- x)^3/(9 - (- x)^2`
= `(-x)^3/(9 - x^2)`
= – f(x)
∴ f is an odd function.
∴ `int_(-1)^(1) f(x)*dx` = 0
∴ I2 = `int_(-1)^(1) x^3/(9 - x^2)*dx` = 0 ...(3)
From (1),(2) and (3), we get
I = `(1)/(3)log2 + 0`
= `(1)/(3)log2`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate the following : `int_(-a)^(a) (x + x^3)/(16 - x^2)*dx`
Choose the correct option from the given alternatives :
If `[1/logx - 1/(logx)^2]*dx = a + b/(log2)`, then
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Evaluate the following : `int_0^(pi/4) (tan^3x)/(1 +cos2x)*dx`
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
Evaluate the following : `int_0^(pi/4) (cos2x)/(1 + cos 2x + sin 2x)*dx`
Evaluate the following : `int_0^(pi/2) [2 log (sinx) - log (sin 2x)]*dx`
Evaluate the following definite integral:
`int_(-2)^3 (1)/(x + 5)*dx`
Choose the correct alternative :
`int_2^3 x/(x^2 - 1)*dx` =
Choose the correct alternative :
`int_0^2 e^x*dx` =
Choose the correct alternative :
`int_"a"^"b" f(x)*dx` =
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Fill in the blank : `int_2^3 x^4*dx` = _______
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_(-4)^(-1) (1)/x*dx`
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
`int_1^2 x^2 "d"x` = ______
Evaluate `int_1^"e" 1/(x(1 + log x)^2) "d"x`
Evaluate `int_1^3 log x "d"x`
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate:
`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`
Evaluate:
`int_0^1 |x| dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integral:
`int_1^3 logx dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following definite intergral:
`int_1^3logxdx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Solve the following.
`int_0^1 e^(x^2) x^3 dx`
Evaluate the following integral.
`int_-9^9 x^3/(4-x^2)` dx
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5).dx`
Solve the following.
`int_1^3 x^2 logxdx`