Advertisements
Advertisements
प्रश्न
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
पर्याय
`(7)/(2)`
`(5)/(2)`
7
2
उत्तर
Let I = `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` ...(i)
= `int_2^7 sqrt(2 + 7 - x)/(sqrt(2 + 7 - x) + sqrt(9 - (2 + 7 - x)))*dx ...[because int_"a"^"b" f(x)*dx = int_"a"^"b" f("a" + "b" - x)*dx]`
∴ I = `int_2^7 sqrt(9 - x)/(sqrt(9 - x) + sqrt(x))*dx` ...(ii)
Adding (i) and (ii), we get
2I = `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx + int_2^7 sqrt(9 - x)/(sqrt(9 - x) + sqrt(x))*dx`
= `int_2^7 (sqrt(x) + sqrt(9 - x))/(sqrt(x) + sqrt(9 - x))*dx`
= `int_2^7 1*dx`
= `[x]_2^7`
∴ 2I = 7 – 2 = 5
∴ I = `(5)/(2)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
Evaluate : `int_0^(pi/4) sin^4x*dx`
Evaluate:
`int_0^1 sqrt((1 - x)/(1 + x)) * dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following integrals:
`int_1^3 (root(3)(x + 5))/(root(3)(x + 5) + root(3)(9 - x))*dx`
Fill in the blank : If `int_0^"a" 3x^2*dx` = 8, then a = _______
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
Prove that: `int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"(2"a" - x) "d"x`
`int_0^"a" 4x^3 "d"x` = 81, then a = ______
Evaluate `int_1^3 log x "d"x`
Evaluate the following definite integral:
`int_1^3 log x dx`
Solve the following:
`int_1^3 x^2 log x dx`
Solve the following.
`int_0 ^1 e^(x^2) * x^3`dx
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`