Advertisements
Advertisements
Question
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
Options
`(7)/(2)`
`(5)/(2)`
7
2
Solution
Let I = `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` ...(i)
= `int_2^7 sqrt(2 + 7 - x)/(sqrt(2 + 7 - x) + sqrt(9 - (2 + 7 - x)))*dx ...[because int_"a"^"b" f(x)*dx = int_"a"^"b" f("a" + "b" - x)*dx]`
∴ I = `int_2^7 sqrt(9 - x)/(sqrt(9 - x) + sqrt(x))*dx` ...(ii)
Adding (i) and (ii), we get
2I = `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx + int_2^7 sqrt(9 - x)/(sqrt(9 - x) + sqrt(x))*dx`
= `int_2^7 (sqrt(x) + sqrt(9 - x))/(sqrt(x) + sqrt(9 - x))*dx`
= `int_2^7 1*dx`
= `[x]_2^7`
∴ 2I = 7 – 2 = 5
∴ I = `(5)/(2)`.
APPEARS IN
RELATED QUESTIONS
Show that: `int _0^(pi/4) log (1 + tanx) dx = pi/8 log2`
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
Evaluate the following definite integral:
`int_(-2)^3 (1)/(x + 5)*dx`
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
Choose the correct alternative:
`int_2^3 x^4 "d"x` =
Choose the correct alternative:
`int_2^3 x/(x^2 - 1) "d"x` =
State whether the following statement is True or False:
`int_0^1 1/(2x + 5) "d"x = log(7/5)`
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
`int_(-2)^2 sqrt((2 - x)/(2 + x))` = ?
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integrals: `int_-2^3 1/(x + 5) *dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_-2^3 1/(x+5).dx`