Advertisements
Advertisements
प्रश्न
Evaluate:
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
उत्तर
`int_0^(pi/4) sqrt(1 + sin 2x)*dx`
= `int_0^(pi/4) sqrt(sin^2x + cos^2x + 2 sin x cos x)*dx`
= `int_0^(pi/4) sqrt((sinx + cosx)^2)*dx`
= `int_0^(pi/4) (sinx + cosx)*dx`
= `int_0^(pi/4) sinx*dx + int_0^(pi/4) cosx*dx`
= `[ - cos x]_0^(pi/4) + [sin x]_0^(pi/4)`
= `[- cos pi/4 - (- cos 0)] + [sin pi/4 - sin 0]`
= `-(1)/sqrt(2) + 1 + (1)/sqrt(2) - 0`
= 1.
APPEARS IN
संबंधित प्रश्न
Prove that:
`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`
Evaluate : `int_1^9(x + 1)/sqrt(x)*dx`
Evaluate : `int_0^(pi/4) (sec^2x)/(3tan^2x + 4tan x +1)*dx`
Evaluate:
`int_0^(pi/2) sqrt(cos x) sin^3x * dx`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
Evaluate : `int_1^3 (cos(logx))/x*dx`
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Evaluate the following : `int_0^(pi/2) cosx/(3cosx + sinx)*dx`
Evaluate the following : `int_0^1 (cos^-1 x^2)*dx`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following : `int_(pi/5)^((3pi)/10) sinx/(sinx + cosx)*dx`
Evaluate the following : If `int_0^k 1/(2 + 8x^2)*dx = pi/(16)`, find k
Evaluate the following definite integrals: If `int_0^"a" (2x + 1)*dx` = 2, find the real value of a.
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
Evaluate the following integrals : `int_0^1 log(1/x - 1)*dx`
Choose the correct alternative :
`int_2^3 x^4*dx` =
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f("t")*dt`
Solve the following : `int_1^2 (x + 3)/(x (x + 2))*dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
Choose the correct alternative:
`int_(-2)^3 1/(x + 5) "d"x` =
State whether the following statement is True or False:
`int_0^"a" 3x^2 "d"x` = 27, then a = 2.5
State whether the following statement is True or False:
`int_2^3 x/(x^2 + 1) "d"x = 1/2 log 2`
`int_((-pi)/8)^(pi/8) log ((2 - sin x)/(2 + sin x))` dx = ______.
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Evaluate:
`int_(-π/2)^(π/2) (sin^3x)/(1 + cos^2x)dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtxdx`
Evaluate the following definite intergral:
`int_1^2(3x)/((9x^2-1))dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/ ((9x^2 -1)) dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) · dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`