Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
उत्तर
Let I = `int_0^(pi/2) sin2x*tan^-1 (sinx)*dx`
= `int_0^(pi/2) tan^-1 (sinx)*(2sinx cosx)*dx`
Put sinx = t
∴ cos x·dx = dt
When x = 0, t = sin 0 = 0
When x = `pi/(2), t = sin pi/(2)` = 1
∴ I = `int_0^1(tan^-1 t)(2t)*dt`
= `[tan^-1 t int 2t dt]_0^1 - int_0^1(d/dt (tan^-1 t) int 2t dt)*dt`
= `[tan^-1 t int (t)^2 ]_0^1 - int_0^1 1/(1 + t^2)*t^2*dt`
= `[t^2 tan^-1 t]_0^1 - int_0^1 ((1 + t^2) - 1)/(1 + t^2)*dt`
= `[1*tan^-1 - 0] -int_0^1 (1 - 1/(1 + t^2))*dt`
= `pi/(4) - [t - tan^-1 t]_0^1`
= `pi/(4) - [(1 - tan^-1 1) - 0]`
= `pi/(4) - 1 + pi/(4)`
= `pi/(2) - 1`
APPEARS IN
संबंधित प्रश्न
Evaluate:
`int_(-pi/4)^(pi/4) (1)/(1 - sinx)*dx`
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate : `int_0^1 x tan^-1x*dx`
Evaluate the following : `int_0^3 x^2(3 - x)^(5/2)*dx`
Evaluate the following : `int_(-1)^(1) (x^3 + 2)/sqrt(x^2 + 4)*dx`
Choose the correct option from the given alternatives :
If `dx/(sqrt(1 + x) - sqrt(x)) = k/(3)`, then k is equal to
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following : `int_0^1 (1/(1 + x^2))sin^-1((2x)/(1 + x^2))*dx`
Evaluate the following : `int_0^(pi/2) 1/(6 - cosx)*dx`
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Evaluate the following definite integrals: `int_0^1 (x^2 + 3x + 2)/sqrt(x)dx`
Evaluate the following definite integrals: if `int_1^"a" (3x^2 + 2x + 1)*dx` = 11, find a.
Evaluate the following integrals : `int_(-9)^9 x^3/(4 - x^2).dx`
Choose the correct alternative :
If `int_0^"a" 3x^2*dx` = 8, then a = ?
Fill in the blank : `int_(-9)^9 x^3/(4 - x^2)*dx` = _______
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
Solve the following : `int_1^2 x^2*dx`
Solve the following : `int_0^4 (1)/sqrt(x^2 + 2x + 3)*dx`
Choose the correct alternative:
`int_0^"a" 3x^5 "d"x` = 8, then a =
State whether the following statement is True or False:
`int_0^(2"a") "f"(x) "d"x = int_0^"a" "f"(x) "d"x + int_0^"a" "f"("a" - x) "d"x`
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Solution: Let I = `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`
∴ x + 3 = A(x + 2) + B.x
∴ A = `square`, B = `square`
∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`
∴ I = `[square log x + square log(x + 2)]_1^2`
∴ I = `square`
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
Evaluate the following definite integrats:
`int_4^9 1/sqrt x dx`
Evaluate the following definite intergrals.
`int_1^3 logx* dx`
Evaluate the following integrals:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Solve the following.
`int_1^3x^2 logx dx`
Evaluate the integral.
`int_-9^9 x^3/(4-x^2) dx`
Evaluate the following definite intergral.
`int_1^2 (3x)/((9x^2 - 1))dx`
Evaluate the following definite intergral:
`int_(1)^3logx dx`
Evaluate the following definite intergral:
`int_4^9(1)/sqrtxdx`