मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Evaluate ∫12e2x(1x-12x2) dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2))  "d"x`

बेरीज

उत्तर

Let  I = `int_1^2 "e"^(2x) (1/x - 1/(2x^2))  "d"x`

= `int_1^2 "e"^(2x)*1/x "d"x - int_1^2 "e"^(2x)*1/(2x^2)  "d"x`

= `[1/x int"e"^(2x)  "d"x]_1^2 - int_1^2["d"/("d"x)(1/x)"f""e"^(2x)  "d"x]"d"x - 1/2 int_1^2"e"^(2x)* 1/x^2 "d"x`

= `[1/x * ("e"^(2x))/2]_1^2 - int_1^2(-1/x^2)* ("e"^(2x))/2 "d"x - 1/2 int_1^2 "e"^(2x) * 1/x^2  "d"x`

= `(1/4 "e"^4 - "e"^2/2) + 1/2 int_1^2 "e"^(2x) * 1/x^2  "d"x - 1/2 int_1^2 "e"^(2x) * 1/x^2 "d"x`

∴ I = `"e"^4/4 - "e"^2/2`

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1.6: Definite Integration - Q.5

संबंधित प्रश्‍न

Prove that:

`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`


Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`


Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`


Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`


Choose the correct option from the given alternatives :

`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`


State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`


Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`


Solve the following : `int_1^2 x^2*dx`


Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`


State whether the following statement is True or False: 

`int_2^3 x/(x^2 + 1)  "d"x = 1/2 log 2`


Evaluate `int_1^2 (3x)/((9x^2 - 1))  "d"x`


By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Solution: Let I = `int_1^2 (x + 3)/(x(x + 2))  "d"x`

Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`

∴ x + 3 = A(x + 2) + B.x

∴ A = `square`, B = `square`

∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`

∴ I = `[square log x + square log(x + 2)]_1^2`

∴ I = `square`


Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`


Prove that `int_0^(2a) f(x)dx = int_0^a[f(x)  + f(2a - x)]dx`


`int_a^b f(x) dx = int_a^b f (t) dt`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following definite integral:

`int_1^2 (3x)/((9x^2 - 1)) dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×