Advertisements
Advertisements
प्रश्न
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
उत्तर
Let I = `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
= `int_1^2 "e"^(2x)*1/x "d"x - int_1^2 "e"^(2x)*1/(2x^2) "d"x`
= `[1/x int"e"^(2x) "d"x]_1^2 - int_1^2["d"/("d"x)(1/x)"f""e"^(2x) "d"x]"d"x - 1/2 int_1^2"e"^(2x)* 1/x^2 "d"x`
= `[1/x * ("e"^(2x))/2]_1^2 - int_1^2(-1/x^2)* ("e"^(2x))/2 "d"x - 1/2 int_1^2 "e"^(2x) * 1/x^2 "d"x`
= `(1/4 "e"^4 - "e"^2/2) + 1/2 int_1^2 "e"^(2x) * 1/x^2 "d"x - 1/2 int_1^2 "e"^(2x) * 1/x^2 "d"x`
∴ I = `"e"^4/4 - "e"^2/2`
APPEARS IN
संबंधित प्रश्न
Prove that:
`int 1/(a^2 - x^2) dx = 1/2 a log ((a +x)/(a-x)) + c`
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate : `int_0^(pi/2) (sinx - cosx)/(1 + sinx cosx)*dx`
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
Choose the correct option from the given alternatives :
`int_0^9 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
State whether the following is True or False : `int_"a"^"b" f(x)*dx = int_"a"^"b" f(x - "a" - "b")*dx`
Solve the following : `int_1^2 e^(2x) (1/x - 1/(2x^2))*dx`
Solve the following : `int_1^2 x^2*dx`
Solve the following : `int_1^2 (5x^2)/(x^2 + 4x + 3)*dx`
State whether the following statement is True or False:
`int_2^3 x/(x^2 + 1) "d"x = 1/2 log 2`
Evaluate `int_1^2 (3x)/((9x^2 - 1)) "d"x`
By completing the following activity, Evaluate `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Solution: Let I = `int_1^2 (x + 3)/(x(x + 2)) "d"x`
Let `(x + 3)/(x(x + 2)) = "A"/x + "B"/((x + 2))`
∴ x + 3 = A(x + 2) + B.x
∴ A = `square`, B = `square`
∴ I = `int_1^2[("( )")/x + ("( )")/((x + 2))] "d"x`
∴ I = `[square log x + square log(x + 2)]_1^2`
∴ I = `square`
Prove that: `int_0^(2a) f(x)dx = int_0^a f(x)dx + int_0^a f(2a - x)dx`
Prove that `int_0^(2a) f(x)dx = int_0^a[f(x) + f(2a - x)]dx`
`int_a^b f(x) dx = int_a^b f (t) dt`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite integral:
`int_1^2 (3x)/((9x^2 - 1)) dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`