मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate : ∫0π13+2sinx+cosx⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`

बेरीज

उत्तर

Let I = `int_0^pi (1)/(3 + 2sinx + cosx)*dx`

Put `tan  x/(2)` = t
∴ x = 2 tan–1 t

∴ dx = `(2dt)/(1 + t^2)`
and
sinx = `(2t)/(1 + t^2), cos x = (1 - t^2)/(1 + t^2)`
When x = 0, t = tan0 = 0
When x = `pi, t = tan  pi/(2) = oo`

∴ I = `int_0^oo (1)/(3 + 2((2t)/(1 + t^2)) + ((1 - t^2)/(1 + t^2)))*(2dt)/(1 + t^2)`

= `int_0^oo (1)/(2t^2 + 4t + 4)*dt`

= `(2)/(2) int_0^oo (1)/(t^2 + 2t + 2)*dt`

= `int_0^oo (1)/((t^2 + 2t + 1) + 1)*dt`

= `int_0^oo (1)/((t^2 + 2t + 1 + 1)*dt`

= `int_0^oo (1)/((t + 1)^2 + (1)^2)*dt`

= `(1)/(1)[tan^-1 ((t + 1)/1)]_0^oo`

= `[tan^-1 (t + 1)]_0^oo`

= `tan^-1 oo - tan^1 1`

= `pi/(2) - pi/(4)`

= `pi/(4)`

shaalaa.com
Fundamental Theorem of Integral Calculus
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Definite Integration - Exercise 4.2 [पृष्ठ १७२]

APPEARS IN

संबंधित प्रश्‍न

Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`


Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`


Evaluate : `int_0^1 x tan^-1x*dx`


Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`


Choose the correct option from the given alternatives : 

`int_1^2 (1)/x^2 e^(1/x)*dx` = 


Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`


Evaluate the following:

`int_0^pi x/(1 + sin^2x) * dx`


Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`


Evaluate the following definite integral:

`int_4^9 (1)/sqrt(x)*dx`


Choose the correct alternative :

`int_2^3 x^4*dx` =


Choose the correct alternative :

`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =


State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`


State whether the following is True or False :  `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`


State whether the following is True or False :  `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`


State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`


Solve the following : `int_0^1 (1)/(2x - 3)*dx`


Solve the following : `int_1^2 dx/(x(1 + logx)^2`


`int_1^9 (x + 1)/sqrt(x)  "d"x` =


`int_1^2 ("e"^(1/x))/(x^2)  "d"x` =


Prove that: `int_"a"^"b" "f"(x)  "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`


Evaluate `int_0^1 "e"^(x^2)*"x"^3  "d"x`


`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?


Evaluate the following definite integrals:

`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrt(x)dx`


Solve the following.

`int_1^3 x^2 log x  dx`


Evaluate the following definite integral:

`int_4^9 1/sqrtx dx`


Solve the following:

`int_1^3 x^2 log x dx`


Evaluate the following definite intergral:

`int_4^9 1/sqrtx dx`


Evaluate the following definite intergral:

`int_1^3 log x·dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5) · dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5).dx`


Evaluate the following definite intergral:

`int_1^3 log x  dx`


Evaluate the following definite intergral.

`int_4^9 1/sqrtx .dx`


Solve the following.

`int_0^1e^(x^2) x^3 dx`


Evaluate the following definite intergral:

`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`


Evaluate the following definite intergral:

`int_-2^3 1/(x+5)dx`


Solve the following.

`int_1^3x^2log x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×