Advertisements
Advertisements
प्रश्न
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
उत्तर
Let I = `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Put `tan x/(2)` = t
∴ x = 2 tan–1 t
∴ dx = `(2dt)/(1 + t^2)`
and
sinx = `(2t)/(1 + t^2), cos x = (1 - t^2)/(1 + t^2)`
When x = 0, t = tan0 = 0
When x = `pi, t = tan pi/(2) = oo`
∴ I = `int_0^oo (1)/(3 + 2((2t)/(1 + t^2)) + ((1 - t^2)/(1 + t^2)))*(2dt)/(1 + t^2)`
= `int_0^oo (1)/(2t^2 + 4t + 4)*dt`
= `(2)/(2) int_0^oo (1)/(t^2 + 2t + 2)*dt`
= `int_0^oo (1)/((t^2 + 2t + 1) + 1)*dt`
= `int_0^oo (1)/((t^2 + 2t + 1 + 1)*dt`
= `int_0^oo (1)/((t + 1)^2 + (1)^2)*dt`
= `(1)/(1)[tan^-1 ((t + 1)/1)]_0^oo`
= `[tan^-1 (t + 1)]_0^oo`
= `tan^-1 oo - tan^1 1`
= `pi/(2) - pi/(4)`
= `pi/(4)`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^(pi/4) sin 4x sin 3x *dx`
Evaluate : `int_(-4)^2 (1)/(x^2 + 4x + 13)*dx`
Evaluate : `int_0^1 x tan^-1x*dx`
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
Choose the correct option from the given alternatives :
`int_1^2 (1)/x^2 e^(1/x)*dx` =
Evaluate the following : `int_0^pi x*sinx*cos^4x*dx`
Evaluate the following:
`int_0^pi x/(1 + sin^2x) * dx`
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Evaluate the following definite integral:
`int_4^9 (1)/sqrt(x)*dx`
Choose the correct alternative :
`int_2^3 x^4*dx` =
Choose the correct alternative :
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx` =
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
State whether the following is True or False : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx = (1)/(2)`
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
State whether the following is True or False : `int_4^7 ((11 - x)^2)/((11 - x)^2 + x^2)*dx = (3)/(2)`
Solve the following : `int_0^1 (1)/(2x - 3)*dx`
Solve the following : `int_1^2 dx/(x(1 + logx)^2`
`int_1^9 (x + 1)/sqrt(x) "d"x` =
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
Evaluate `int_0^1 "e"^(x^2)*"x"^3 "d"x`
`int_0^(pi/2) (cos x)/((4 + sin x)(3 + sin x))`dx = ?
Evaluate the following definite integrals:
`int _1^2 (3x) / ( (9 x^2 - 1)) * dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrt(x)dx`
Solve the following.
`int_1^3 x^2 log x dx`
Evaluate the following definite integral:
`int_4^9 1/sqrtx dx`
Solve the following:
`int_1^3 x^2 log x dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_1^3 log x·dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5) · dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5).dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`
Evaluate the following definite intergral.
`int_4^9 1/sqrtx .dx`
Solve the following.
`int_0^1e^(x^2) x^3 dx`
Evaluate the following definite intergral:
`\underset{4}{\overset{9}{int}}1/sqrt(x)dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Solve the following.
`int_1^3x^2log x dx`